Originally posted in said PDF
The process used to study the stability of the solvent with respect to chlorine evolution was the electrolysis of KA1Cl4 in propylene carbonate,
Chlorine was produced and evolved at the anode.
Potassium was reduced or deposited at the cathode. The overall reaction involved
is:
KAlCl4 ↔ K++ Cl- + AlCl3
The half reactions at the cathode and anode are, respectively:
K+ + e- → K, and Cl- + Cl- → Cl2 + 2e-.
Assuming a 100% current efficiency, two moles of potassium were deposited
for every mole of chlorine evolved.This proposed chlorine evolution anodic reaction was quite attractive
from the point of view of raw material considerations. Theoretically only
KCl is consumed in the electrolysis, It can be replenished by simply
adding KCl into the system. Hence this process is capable of producing
valuable chemicals, potassium and chlorine, from a relatively cheap
source, KCl. The most important consideration of all, however, is that
the system can be operated at room temperature.
|