Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
 Pages:  1  ..  3    5    7  ..  18
Author: Subject: Azides
garage chemist
chemical wizard
*****




Posts: 1803
Registered: 16-8-2004
Location: Germany
Member Is Offline

Mood: No Mood

[*] posted on 6-5-2005 at 13:38


Sodium nitrite has appreciable solubility in ethanol. I don't think it would precipitate.
And the washing of the NaN3 with ethanol would remove any nitrite.

I'll do the freebasing again when I have my clean ethanol.
So I should mix all of the NaOH with the HS, and then take up the formed hydrazine hydrate with ethanol?
Or could I add ethanol to the HS and then add the NaOH in two portions, like I've been doing, just with good cooling?
Microtek adds the alcohol from the beginning. I like that method because everything is covered with liquid and the ethanol fumes protect the hydrazine from oxygen to some degree.
View user's profile View All Posts By User
Rosco Bodine
Banned





Posts: 6370
Registered: 29-9-2004
Member Is Offline

Mood: analytical

[*] posted on 6-5-2005 at 14:50


I have freebased 2 moles of HS at one time in a 1 liter Erlenmeyer , using the
alternating additions method I have described , where first 1 mole HS is converted to a hot liquid solution of the dihydrazine sulfate by portionwise additions of about a quarter
of the NaOH used for the freebasing , the second mole of HS added to the hot liquid
in alternating portions with the second quarter of the NaOH , keeping the mixture very hot and stirrable to the completion of the additions . The second half of the NaOH is then added in portions , likewise maintaining the heat of reaction and even adding some low heating from the stirplate to keep the mixture hot during the final quarter of the freebasing . Stirring is continued and as the cooling mixture thickens and has cooled just sufficiently to prevent flash boiling of the alcohol , the first and largest portion of alcohol is added in a lump to the stirred slurry , stirred for ten minutes and decanted while still very warm . At least two fresh portions of alcohol are added , each being stirred up and decanted , the extracts being combined . The combined extracts are chilled and then the added portion
of NaOH for the formation of the NaN3 is
added as a solid in portions , being dissolved in the combined extracts .

Using methanol this has proven to be an efficient method . However it may be that
a different sequence is better or even essential for avoiding problems using another alcohol . This is known to be so for isopropanol , which is the complication
found to be remedied by microteks method of wetting the HS first with the alcohol . Personally , I don't believe the freebasing proceeds to completion nearly so completely nor rapidly in the nonaqueous condition .

Perhaps it is only a matter of time and the freebasing does go to completion even in alcohol . I have not done any quantitative result comparisons so I can't be certain of which is more efficient . It is just my guess really that the freebasing is better accomplished in the aqueous phase due to the ready solubility of the dihydrazine sulfate intermediate
in the water present , as compared with a poor solubility in alcohol . This would be mitigated by limiting the quantity of alcohol used , so that the " moist alcohol "
provides sufficient water content for the freebasing to proceed at a limited rate , while having too much alcohol initially would quench the freebasing reaction . The disadvantages are perhaps insignificant simply by refining the method , knowing that a particular amount of a particular alcohol establishes a condition favorable to the freebasing , while just any quantity
randomly chosen may give poor results due to the fact that the water content is what enables the reaction to proceed .
View user's profile View All Posts By User
Quince
National Hazard
****




Posts: 773
Registered: 31-1-2005
Location: Vancouver, BC
Member Is Offline

Mood: No Mood

[*] posted on 27-9-2005 at 19:23


Quote:
Originally posted by rogue chemist
Your welcome a_bab.

Sodium azide scans have now been uploaded. Same spot as before


I can't find this anywhere. Looking in the sciencemadness library, the keyword azide is not anywhere on the page.




\"One of the surest signs of Conrad\'s genius is that women dislike his books.\" --George Orwell
View user's profile View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 27-9-2005 at 19:30


The scans are on the ftp under 'rogue chemist', not in the library.



View user's profile View All Posts By User
SAM4CH
Hazard to Others
***




Posts: 162
Registered: 16-7-2004
Location: TA
Member Is Offline

Mood: PERFECT

[*] posted on 12-4-2007 at 00:59
Hydrazinium Azide


how can I prepare Hydrazinium Azide from hydrazine sulfate or hydrazine hydrate and inorganic azid salt "soium azide"?
View user's profile View All Posts By User This user has MSN Messenger
Axt
National Hazard
****




Posts: 814
Registered: 28-1-2003
Member Is Offline

Mood: No Mood

[*] posted on 15-4-2007 at 04:04


Your after US patent #3155456 "Process for Preparing Hydrazinium Azide" Attached, Reflux hydrazine sulphate and sodium azide in n-butanol.

[Edited on 15-4-2007 by Axt]

Attachment: hydrazinium azide.pdf (328kB)
This file has been downloaded 1685 times

View user's profile Visit user's homepage View All Posts By User
anne_atdf
Harmless
*




Posts: 2
Registered: 10-5-2007
Member Is Offline

Mood: No Mood

[*] posted on 11-5-2007 at 00:02


hy
i search what is the reaction with oxybis(benzenzsulfonyl azide) (N3-SO2-C6H4)2-O ?? do you know how it can react with H2O, O2 or with thermal decomposition??and what is the condition? i you know tell me please, i'm desperate!!:(
View user's profile View All Posts By User
nitro-genes
International Hazard
*****




Posts: 1048
Registered: 5-4-2005
Member Is Offline


[*] posted on 26-5-2007 at 21:54


Just out of curiosity, but I've seen several MSD sheets for silver(I)diamine solutions (tollens reagent) mention formation of silver azide on storage. First I thought it was a mistake, and that they meant silver nitride complexes that are generally formed from ammonia and silver(I), though these nitride complexes are dark coloured, usually black compounds while one of the MSDS clearly mentions formation of highly explosive colourless crystals...

Any idea of this is true? I can't really envision how azides would be formed this way. :)

I would be cool though, just heating a silver(I)nitrate solution with excess 30% ammonia, so that the formed silverazide would stay in solution, then distilling off some of the ammonia by heating until clouding can be observed, followed by addition of some acetic acid to provide crystal nuclei (US3943235) to yield one of the most efficient freeflowing primaries in a one pot reaction. Even if the yield woud be terrible (very probable), the silver nitrate could easily be reclaimed from the solution...

Nehhh, just too good to be true...:P

[Edited on by nitro-genes]
View user's profile View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 27-5-2007 at 01:06


I keep hearing unsubstantiated claims as well. All regarding hydrolysis of nitrides to azides, however given that there are so many misconceptions, even among those in academia, regarding silver-nitrogen explosives, it is not a surprise.

I had one professor at one point mention that magnesium nitride hydrolyses in water to N3- (which he did not know the name for, oddly), and have heard all manner of claims from professors regarding the old silver ammonia precipitates all sorts of things including silver azide, fulminate, hydrazide(?). I suppose those without direct interest in the chemistry here take what they hear from somewhere incorrectly, and pass it on.

I believe it is too good to be true, but would enjoy being wrong.:P




View user's profile View All Posts By User
nitro-genes
International Hazard
*****




Posts: 1048
Registered: 5-4-2005
Member Is Offline


[*] posted on 27-5-2007 at 10:29


I doubt the formation of the azide as well, even the colour of the product may be deceptive as I've read that the black colour of the silver nitride/imide complex could also be caused by the presence of elementary silver as well as traces of silver oxide, which would be absent when slowly left to crystallize.

The silverazide supposedly only forms on prolonged storage unlike silver nitride, so one of the things that could explain the formation of azides is oxydation of the silver imide/amide with the excess ammonia and oxygen from the air.

In any case is it likely that the product would be contaminated with substantial amounts of silver nitride rendering it too dangerous to be of any practical use.
View user's profile View All Posts By User
crazyboy
Hazard to Others
***




Posts: 436
Registered: 31-1-2008
Member Is Offline

Mood: Marginally insane

[*] posted on 13-2-2008 at 15:55


Does anyone have a synthesis for silver azide by using an aqueous silver nitrate and aqueous sodium azide? I would like as specific instructions as possible not just theoretical formulas. ie temperatures, heating, cooling and mixing if necessary. Thanks in advance.



View user's profile View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 13-2-2008 at 19:20


It is a simple metathesis...mix solutions, stir, filter, wash.

If such simple chemistry is unknown to you, it would be inadvisable to start with preparing a compound as sensitive as silver azide.




View user's profile View All Posts By User
crazyboy
Hazard to Others
***




Posts: 436
Registered: 31-1-2008
Member Is Offline

Mood: Marginally insane

[*] posted on 13-2-2008 at 21:26


This is not the first energetic compound I have prepared however I like to go into things with full awareness of what to do or what to expect. Not being aware of these things is how accidents happen. and as you mentioned an accident with a compound as sensitive as silver azide would could be the last one you ever make.



View user's profile View All Posts By User
Sickman
Hazard to Self
**




Posts: 98
Registered: 9-5-2004
Member Is Offline

Mood: Icy and I see!

[*] posted on 13-2-2008 at 23:23
The Manufacture of Silver Azide R.D. 1336


@The_Davster,

You know with all the seemingly millions of "recipes" for the manufacture of organic peroxides floating around on the internet I feel the world is just a little safer every time a good azide synthesis is posted or even just a link to a good azide synthesis.;)

Honestly I'd rather see the supposed newbie, Crazyboy, try his hand at silver azide than to loose a hand with the organic peroxides.

So here you go Crazyboy:

The following link is to a military report on the synthesis of silver azide for use in service detonators by the U.S. Military.
It is dubbed The Manufacture of Silver Azide R.D. 1336. If you right click on the link and select "save target as" you can download and view the pdf file which is about 3.55 Mb. The report is 24 pages in length and describes a three pound batch size which of course you can scale way down to even milligram batches if you want to and should. 20 degrees Celsius is the desired operating temperature during the entire synthesis. Yields are very high according to the report and the resulting silver azide is of a satisfactory density and stability, and initiatory abilities are higher than that of service lead azide, which today is the current king of primary explosives, in my opinion!

A word to the wise: Only make silver azide in manageable amounts. For example half of a gram or less at a time. Wear safety glasses all the time and thick cowhide gloves. Don't put any material of substance, such as glass or metal between you and the primary explosive, unless a strong shield such as a thick peice of plexyglass is used. If you are to load a metallic blasting cap with an explosive, drill a cap sized hole in a thick block of wood, and then press the cap in the block. That way if an accident should occur the block of wood gets hurt and not you!:D
View user's profile View All Posts By User
woelen
Super Administrator
*********




Posts: 8027
Registered: 20-8-2005
Location: Netherlands
Member Is Offline

Mood: interested

[*] posted on 13-2-2008 at 23:50


I would say, don't make half a gram, but only make at most 100 mg. You will be surprised how loud a bang such a small quantity can give. An explosion of this quantity inside the house will give you pain on the ears. You then can work at test tube scale, with test tubes wrapped in a towel. If the stuff explodes, then you won't hurt your hand, the towel will be damaged. Do wear safety glasses, even with 100 mg quantities.



The art of wondering makes life worth living...
Want to wonder? Look at https://woelen.homescience.net
View user's profile Visit user's homepage View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 14-2-2008 at 18:14


From the book that started this thread.
(any errors I missed were from the OCR)

Quote:

Silver Azide, AgN3, is a white crystalline solid which is photosensitive and has the property of explosion. The technical product is often gray. The azide is practically insoluble in water and organic solvents. Aqueous ammonia [ l ] or anhydrous hydrogen fluoride [196] dissolve it as a complex; upon evaporation, the azide is recovered unchanged. Colorless needles more than 10 mm long are easily obtained from the ammonia solution [197]. In nitric acid it dissolves with chemical destruction, evolving HN3 gas. On exposure to light, silver azide turns first violet and finally black, as colloidal silver is formed and nitrogen evolves [175,176]. As photographic emulsion, the azide is found to be 200 times less photosensitive than silver bromide, but more easily reducible by developers. The emulsions are not explosive [198]. A suspension of silver azide in boiling water decomposes with a discoloration similar to that of the photodecomposition [176]. When heated dry, the azide turns violet at 1 50'C and melts at 25 1OC to a blackish liquid. Starting at 253'C the melt evolves nitrogen gas at a rate which simulates boiling. The mass then shrinks to a brown solid and finally, at the end of decomposing, appears white. Under the microscope the particles appear as silver metal (21. When heated rapidly, silver azide explodes at 3W°C with high brisance, emitting a green light flash [1,2,176]. A partially (50%) decomposed, gray sample explodes with the same brisance at 305'~ [176]. The degree of decomposition has evidently little influence on the explosive behavior. The same was found for mechanical explosion; white and gray samples are equally highly sensitive to friction and impact
(1991. However, the particle size has a distinct influence on impact sensitivity; coarser samples are more sensitive [l92,200]. Long needles of silver azide frequently explode when broken with a metal wire [197]. The AgN3/N3- half cell assumes a standard potential of +0.384 V at 21 "C; the solubility of silver azide in water was electrochemically determined as 8.4 X g/liter at 18OC [201].
Of historic interest is a reaction in which the azide group was synthesized from hydrazine and nitrite in the presence of silver ions [19,98] (see p. 24). Most commonly, silver azide is prepared by mixing aqueous solutions of hydrazoic acid or sodium azide with silver nitrate. The product is precipitated in fine crystalline form; larger crystallites are obtained from more dilute reagents [200]. One author recommended the use of an excess of sliver nitrate; another believed this would enhance the photodecomposition of the product [202]. Of more significance is the recommendation to make the azide in the dark, or at least under red light, [203.204] and to wash the product completely ion free.

To prepare 3-g batches, a solution of 3.42 g silver nitrate (slight excess) in 100 ml water is placed in a 500-rnl beaker and heated to 60-70'~. The solution is stirred with a rubber-clad glass rod, and a solution of 1.3 g sodium azide in 100 ml water (60-70'~) is added within 3-4 min. The precipitate is stirred until well coagulated and then transferred to a Buchner funnel. To avoid contact with the hard funnel material, both the bottom and walls are covered with filter paper. The product is washed with water until nitrate free, thed h alcohol and ether, followed by drying at 70-90°C.


One should be very carefull, as these compounds can explode under water, so glass stirring rods are a no-no. And as mentioned, use small ammounts.
The above synthesis I believe is tailored to a silver azide product more suited for practical use, wheras if you need only a few mg for demonstration of the explosive effect, simple azide and silver solutions can be mixed without any special procedure. I have done such before without issues.




View user's profile View All Posts By User
microcosmicus
Hazard to Others
***




Posts: 287
Registered: 31-12-2007
Member Is Offline

Mood: spin up

[*] posted on 14-2-2008 at 20:09


Could you provide a bibliographic reference (i.e. title and author) for this
500 page tome on azides which you have been referring to as "the book"?
Reading through this thread, I have seen plenty of quotations, but none
of the information which would allow me to track down a copy at a
library near me. :)

[Edited on 14-2-2008 by microcosmicus]
View user's profile Visit user's homepage View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 14-2-2008 at 20:48


Silly me, I cannot believe I never did.
Energetic Materials. Vol. 1. Physics and Chemistry of the Inorganic Azides. Edited by H. D. Fair and R. F. Walker




View user's profile View All Posts By User
Engager
Hazard to Others
***




Posts: 295
Registered: 8-1-2006
Location: Moscow, Russia
Member Is Offline

Mood: Lagrangian

[*] posted on 20-2-2008 at 23:08


Hi all, i have some comments related to azides. First off all stay away from HN3, not even it is highly explosive, it is also very volatile and highly toxic. It's fumes can detonate on contact with sharp surfaces and at slight pressure change. Boiling point of HN3 is just above 35C, and if you place it in cold beaker it can condense on side walls forming hazardous concentrated HN3 drops. Never add acids to cold solution of azide!!!

Stay away from copper azide, i know guy who made it and it detonated in his hands while he suddenly broken small crystall, also it can expode underwater if crystalls are big enough. Remember that Co and Ni azides are total suicide, they are extremely sensitive, in dry state whey detonate even then trying to move it with soft brush.

Pb azide can also explode while precipitation from water solution because inner crystalline stresses, always pay attention to make only small crystalline forms and stabilise them with binders such as dextrin.

Azides are very toxic, they disturb redox reactions in organism, destroy erythrocytes in bloodstream and oxidize hemoglobine to methemoglobine. Also be aware that not harm and fatal concentations for HN3 are very close (same way as HCN), and not-fatal doses of HN3 can cause delayed effects. Toxicological action of HN3 and HCN is the same, and toxicity is close to each other. Azides have same action as cyanides because of same toxicity mechanism. Hydrazine is also highly toxic and is nerve system poison, destroys liver and affects high nerve system activity.

All inorganic azides except alkali metall ones are explosive, lithium azide is also explosive. Organic azides containing more then 25% mass azide nitrogen are also highly explosive and should be handled with great care. Some organic azides are good primary explosives, the most famous one is cianuric triazide. Nitrogen rich azides such as tetrazylazide or isocyanogentetrazide are terribly brisant and sensitive.




View user's profile View All Posts By User
chemoleo
Biochemicus Energeticus
*****




Posts: 3005
Registered: 23-7-2003
Location: England Germany
Member Is Offline

Mood: crystalline

[*] posted on 21-2-2008 at 17:17


Quote:
Remember that Co and Ni azides are total suicide, they are extremely sensitive, in dry state whey detonate even then trying to move it with soft brush

and
Quote:
All inorganic azides except alkali metall ones are explosive, lithium azide is also explosive.

Could you please reference this.

For cyanuric triazide, look up COPAE, it can be prepared by reacting cyanuric chloride with NaN3.
Cyanuric chloride is in turn prepared by passing chlorine gas through HCN (in Et2O or CHCl3), forming extremely toxic cyanogen chloride ClCN in situ.

[Edited on 22-2-2008 by chemoleo]




Never Stop to Begin, and Never Begin to Stop...
Tolerance is good. But not with the intolerant! (Wilhelm Busch)
View user's profile View All Posts By User
quicksilver
International Hazard
*****




Posts: 1820
Registered: 7-9-2005
Location: Inches from the keyboard....
Member Is Offline

Mood: ~-=SWINGS=-~

[*] posted on 22-2-2008 at 07:22


Does anyone have references for molecular weights in relation to energetic reactivity? Simply put, I see density playing a role with mercury and lead and higher sensitivity with copper and silver but yet there seems exceptions depending on the energetic material, so I want to learn more. I have yet to find anything relevant....

Copper azide is unbelievably sensitive, silver much less so, the phenomenon continues with mercuric and lead azide. Why such a differentiation in sensitivity????
View user's profile View All Posts By User
Engager
Hazard to Others
***




Posts: 295
Registered: 8-1-2006
Location: Moscow, Russia
Member Is Offline

Mood: Lagrangian

[*] posted on 22-2-2008 at 07:48


H.D. Fair , R.F. Walker - Physics and chemistry of inorganic azides pages 47,48:



Russian reference L.I. Bagal - Chemistry and technology of primary explosives, page 261:



Translation: Anhydrous cobalt azide (crystalises with one molecule of water) is brownish-red crystalls with melting point 148C (detonation decomposition). Hygroscopic, extremely sensitive to friction (detonates even from friction between lists of paper), extremely sensitive to shock. Thin layer of cobalt azide ignited by hot wire gives detonation velocity 3400 m/sec. Detonation velocity did not changed after neutron bombardment.

Russian 5 volume chemical encyclopedia, Volume 1, page 48:



Translation: Metal azides are crystaline substances (see table above). They are unstable: in many cases friction, impact, heating and light cause explosive decomposition, sometimes explosion can occur than handling wet azide or even in solution. Only azides of alkali metals (except Li) are capable to decompose without explosion.




View user's profile View All Posts By User
quicksilver
International Hazard
*****




Posts: 1820
Registered: 7-9-2005
Location: Inches from the keyboard....
Member Is Offline

Mood: ~-=SWINGS=-~

[*] posted on 23-2-2008 at 07:00


Thank you. I wish there was an English translation of L.I. Bagal. I have seen a lot of Russian material that I would love to read. You're lucky to have those language skills!
View user's profile View All Posts By User
math
Hazard to Others
***




Posts: 101
Registered: 21-7-2006
Member Is Offline

Mood: No Mood

[*] posted on 8-11-2008 at 18:44


which book was it davster?
chemistry of inorganic azides maybe?
View user's profile View All Posts By User
The_Davster
A pnictogen
*******




Posts: 2861
Registered: 18-11-2003
Member Is Offline

Mood: .

[*] posted on 9-11-2008 at 17:46


Quote:
Originally posted by The_Davster
Energetic Materials. Vol. 1. Physics and Chemistry of the Inorganic Azides. Edited by H. D. Fair and R. F. Walker




View user's profile View All Posts By User
 Pages:  1  ..  3    5    7  ..  18

  Go To Top