Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
Author: Subject: High yielding and cheap method for the production of Potassium Cyanide
Thyzoid
Harmless
*




Posts: 14
Registered: 21-5-2019
Location: Lab
Member Is Offline

Mood: Alive.

[*] posted on 18-3-2023 at 01:41
High yielding and cheap method for the production of Potassium Cyanide


The synthesis of potassium cyanide has been discussed numerous times yet the majority of methods have three main flaws: Either the synthesis involves one spicy gas (hydrogen cyanide), it uses expensive reagents (alkaline metals) which are unavailable for some members or it yields a highly contaminated product which is hard to purify. Whether you are blessed with the genetics of a god and can smell hydrogen cyanide or not we could all agree that odour is insufficient as a warning indicator and special monitoring devices are expensive. Sodium should only be employed for small scale preparations or be used for more useful projects.

The following synthesis involves only a single reagent and another one for the cleanup. Despite not using hydrogen cyanide this synthesis should only be repeated if you are 100% sure that you can handle cyanides safely. Understand the dangers involved and do not make cyanide no matter how much you need it if you are unsure. Tiny amounts between 0,5mg and 3,5mg per kilogram of body weight are known to kill.

The Synthesis:
123,9g of Potassium FerrOcyanide Trihydrate (the yellow salt the red one cannot be used) were added to an iron crucible. Aluminium is unsuited due to its low melting point. The container was placed into an electric furnace capable of maintaining a temperature between 850-950°C. The furnace was switched on and the moment the target temperature was reached a 1 hour timer was started. Heating for exactly one hour is overkill and 30 minutes may suffice. The furnace used contained residual carbon which reacted with leftover oxygen. The lid was lifted occasionally to check on the reaction and the first three times we were greeted with a lovely fireball. The flammable gasses could have either resulted from the combustion of carbon monoxide or more likely due to the combustion of a product of the reaction. Cyanogen gas is formed as a side product. It is a highly toxic gas and it is the reason this preparation needs to be conducted in a very well ventilated area. At these high temperatures most of it should immediately be oxidised to harmless side products but you do not want to run the risk of being exposed.

Once 1 hour had passed the crucible was removed from the furnace and allowed to cool down. The product was gently removed using brute force and a heavy hammer. There is no other viable way to remove the contaminated cyanide cake.

Due to the formation of iron carbide, iron metal, carbon and iron oxide a cleanup must follow. Hot water as an extraction solvent was not used as it would hydrolyse some of the cyanide. Our solvent of choice was 99,85+% of Methanol. Cyanide has a solubility of >30g/L of MeOH while poorly soluble in EtOH.

The crushed up, contaminated cyanide was placed into a glas tube plugged with cotton on both ends and a capillary tube was added to the top to allow air to leave. A soxhlet extraction was set up. We used a high efficiency soxhlet extractor (This is a form of soxhlet extractor where the heated solvent gasses do not pass trough an external tube but trough a glass mantle surrounding the extraction chamber. The solvent and the material to be extracted are thus heated and get to a temperature near the boiling point of the solvent). The soxhlet extraction was allowed to run for 10 hours. A few particles of the contaminants made it trough the cotton filter. With finer cotton this could be avoided.

Most of the solvent was recovered after the soxhlet extraction by distilling it off. Not all solvent should be distilled off. About 70ml of methanol were left behind alongside the cyanide. The methanol solution was slightly brown but the crashed out cyanide looked white. A vacuum filtration was performed and leftover cyanide was washed out of the flask using the methanol which already passed trough the filter. The cyanide was sucked dry over the course of 5 minutes before transferring it to a storage bottle. Without a lid the bottle was placed into a vacuum desiccator over dry potassium hydroxide until the weight was constant. The product may be stabilised using potassium hydroxide.

The presence of cyanide was proven using a mixture of iron(II) and iron(III) salts. The purity may be determined soon. If you have good ideas for methods to test the purity let me know.

Yield: 53,5g (70%) White powder with tiny hint of grey. The product was used successfully to perform a benzoin addition or for making benzyl cyanide without further purification.

Reactions:
K4Fe(CN)6 ———> 4 KCN + Fe + N2 + 2 C
K4Fe(CN)6 ———> 4 KCN + Fe + (CN)2
6 Fe + (CN)2 ———> 2 Fe3CC + N2
F3C + O2 ———> 3 Fe + CO2
3 Fe + 2 O2 ———> Fe304

References:
https://link.springer.com/article/10.1007/BF01915163 (paper on the thermal decomposition, reactions and other information / can be opened on s hub)
https://nvlpubs.nist.gov/nistpubs/jres/6/jresv6n6p1051_A2b.p... (solubility of KCN in EtOH and MeOH and a great paper on the purification of cyanides using recrystallisation)

A video of this procedure is available on my Patreon as YouTube would certainly give me a strike but as I want this information and my experiences with this prep to be publicly available this sciencemadness post was written for your reading pleasure. Hope this helps. If anyone tests this method let me know what you think about it.

[Edited on 18-3-2023 by Thyzoid]
View user's profile Visit user's homepage View All Posts By User
Thyzoid
Harmless
*




Posts: 14
Registered: 21-5-2019
Location: Lab
Member Is Offline

Mood: Alive.

[*] posted on 18-3-2023 at 01:45
Pictures 1




crucible.jpg - 1.1MBextraction device.jpg - 1004kBsoxhlet extraction.jpg - 965kBsoxhlet leftovers.jpg - 964kBferrocyanide.jpg - 999kBcyanogen.jpg - 996kB
View user's profile Visit user's homepage View All Posts By User
Thyzoid
Harmless
*




Posts: 14
Registered: 21-5-2019
Location: Lab
Member Is Offline

Mood: Alive.

[*] posted on 18-3-2023 at 01:46
Pictures 2




impurities.jpg - 865kBMeOH wetted product.jpg - 901kBfinished product.jpg - 326kBdone.jpg - 726kB
View user's profile Visit user's homepage View All Posts By User
Admagistr
Hazard to Others
***




Posts: 378
Registered: 4-11-2021
Location: Central Europe
Member Is Offline

Mood: The dreaming alchemist

[*] posted on 18-3-2023 at 02:01


Great work;)!

Edit by Texium: removed excessively long and unnecessary quote

[Edited on 3-18-2023 by Texium]
View user's profile View All Posts By User
PirateDocBrown
National Hazard
****




Posts: 570
Registered: 27-11-2016
Location: Minnesota
Member Is Offline

Mood: No Mood

[*] posted on 18-3-2023 at 02:05


Well done. Saw your YT post.



Phlogiston manufacturer/supplier.

For all your phlogiston needs.
View user's profile View All Posts By User
Bedlasky
International Hazard
*****




Posts: 1246
Registered: 15-4-2019
Location: Period 5, group 6
Member Is Offline

Mood: Volatile

[*] posted on 18-3-2023 at 02:19


Nice write-up! I read about this reaction few years ago, but you are the first person I know who has used this method. Well done!

Quote: Originally posted by Thyzoid  
The presence of cyanide was proven using a mixture of iron(II) and iron(III) salts. The purity may be determined soon. If you have good ideas for methods to test the purity let me know.


Titration with standard AgNO3 solution in ammoniacal buffer, KI is used as indicator. Cyanide reacts with Ag+ ions according to equation:

Ag + 2CN- --> [Ag(CN)2]-

First excess of Ag+ react with I- to form yellow precipitate of AgI. This indicates end-point.

Another possibility is reaction with excess of standard Na2S2O3 solution, than titration of unreacted thiosulfate with standard I2 solution. Starch is used as indicator.

S2O3(2-) + CN- --> SCN- + SO3(2-)
View user's profile View All Posts By User
Lionel Spanner
Hazard to Others
***




Posts: 169
Registered: 14-12-2021
Location: near Barnsley, UK
Member Is Offline


[*] posted on 18-3-2023 at 04:44


Great work!

Incidentally, I'm quite a fan of your videos - the presentation and pacing are excellent.




Industrial chemist rediscovering the practical pleasures of pure chemistry.
Sometimes I make videos - https://www.youtube.com/@yorkshirechemist
View user's profile View All Posts By User
blogfast25
International Hazard
*****




Posts: 10562
Registered: 3-2-2008
Location: Neverland
Member Is Offline

Mood: No Mood

cool.gif posted on 18-3-2023 at 04:50


Quote: Originally posted by Thyzoid  


Nice work!

What's the photo left/up?




View user's profile View All Posts By User
Thyzoid
Harmless
*




Posts: 14
Registered: 21-5-2019
Location: Lab
Member Is Offline

Mood: Alive.

[*] posted on 18-3-2023 at 04:55


@blogfast25

The picture on the upper left corner is the methanol after 10 hours of refluxing. It was slightly reddish due to what i guess was iron contamination. The next day when I did the vacuum filtration the MeOH was more brown than red but most of the brownish solution fortunately went right trough the filter.

@Bedlasky

Your titration method seems good. I'll try that one. Need to get new silver nitrate standard solution first as my old 1L bottle unfortunately fell on the floor. You wouldn't believe how hard that mess was to clean up.

[Edited on 18-3-2023 by Thyzoid]
View user's profile Visit user's homepage View All Posts By User
macckone
Dispenser of practical lab wisdom
*****




Posts: 2169
Registered: 1-3-2013
Location: Over a mile high
Member Is Offline

Mood: Electrical

[*] posted on 18-3-2023 at 07:15


Excellent writeup.
View user's profile View All Posts By User
Osmiridium
Harmless
*




Posts: 26
Registered: 13-3-2023
Location: Multiverse
Member Is Offline

Mood: excited

[*] posted on 19-3-2023 at 05:04


Very nice!

Under certain circumstances (certainly low pH) HCN tends to polymerize to some brown compounds. The brown color may be also caused by this. For most application such a small contamination shouldn't be an issue though.
View user's profile View All Posts By User
draculic acid69
International Hazard
*****




Posts: 1371
Registered: 2-8-2018
Member Is Offline


[*] posted on 28-9-2023 at 21:08


Quote: Originally posted by Osmiridium  
Very nice!

Under certain circumstances (certainly low pH) HCN tends to polymerize to some brown compounds. The brown color may be also caused by this. For most application such a small contamination shouldn't be an issue though.


Polycyanite.sounds horrible and terrifying
View user's profile View All Posts By User
mr_bovinejony
Hazard to Others
***




Posts: 130
Registered: 20-4-2018
Member Is Offline

Mood: ASS

[*] posted on 17-2-2024 at 19:21


This method works great except for getting it out of the crucible. Would Borax help this problem or will it react?
View user's profile View All Posts By User

  Go To Top