Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
 Pages:  1  
Author: Subject: Removing trace impurities from H2O2
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 11:44
Removing trace impurities from H2O2



Hello,

I have some H2O2 at 9% concentration and I'd like to use it in small quantities for applications with puriss. reagents I would not like to contaminate.

How would you go about purifying it (in the sense of removing impurities other than water and H2O2 down to maybe <1ppm for any single impurity)?

I'm predominantly concerned about traces of metal ions and maybe stabilizer additives from the pre-dilution H2O2 solution it was probably made from.

I looked it up in a lab chemicals purification book but the process there was for concentrating H2O2, not riding it from impurities.
View user's profile View All Posts By User
morganbw
National Hazard
****




Posts: 561
Registered: 23-11-2014
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 11:53


I do not want to come off as being rude but sometimes if you need the good stuff you need to buy. Of course you may figure it out, I am just pointing out my thought process.
View user's profile View All Posts By User
Metacelsus
International Hazard
*****




Posts: 2539
Registered: 26-12-2012
Location: Boston, MA
Member Is Offline

Mood: Double, double, toil and trouble

[*] posted on 1-9-2020 at 12:18


What are the impurities? An ion-exchange resin might work.



As below, so above.

My blog: https://denovo.substack.com
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 12:20


Is there is no reasonable way to purify it and is it just better to produce it pure from scratch? Or do you mean in terms of time saving?

I like to purify stuff myself when possible. A point here is that the price per liter literally varies from ~$2 to ~$20 going between probably fairly clean H2O2 solution and puriss. H2O2. I can afford to do chemistry only at fairly priced consumables.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 12:25


I'm not sure what they are. I know sometimes stabilizers are added to the more concentrated H2O2 it might have been made from, and other likely impurities would be ions from the water (say it's made from RO water for economical reasons), and maybe from the apparatus that was used to produce it (Fe, Ni, Cr for instance if stainless steel was used).

Do you know which stabilizers are commonly used in commercial H2O2 solutions?
View user's profile View All Posts By User
DraconicAcid
International Hazard
*****




Posts: 4357
Registered: 1-2-2013
Location: The tiniest college campus ever....
Member Is Offline

Mood: Semi-victorious.

[*] posted on 1-9-2020 at 12:27


I suspect hydrogen peroxide would be too prone to decomposition during purification to bother trying.



Please remember: "Filtrate" is not a verb.
Write up your lab reports the way your instructor wants them, not the way your ex-instructor wants them.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 12:30


So we just have to rely on the pricing of big companies if we absolutely want it pure?


[Edited on 2-9-2020 by VeritasC&E]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 1-9-2020 at 23:55


I can't see any theoretical objections to sub distillation at home. as long as you have the kit.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 01:42


Quote: Originally posted by unionised  
I can't see any theoretical objections to sub distillation at home. as long as you have the kit.


Should I vacuum distill the solution below boiling point with the goal in mind to get a much purer (albeit initially less concentrated) H2O2 solution in the receiver? And in a second step boil away enough H2O to reconcentrate the purified solution to the initial 9%?

Thank you for your contribution!
View user's profile View All Posts By User
teodor
National Hazard
****




Posts: 924
Registered: 28-6-2019
Location: Netherlands
Member Is Offline


[*] posted on 2-9-2020 at 02:14


As far as I remember from this video - https://www.youtube.com/watch?v=nVAe__ToAOY
you can distil without vacuum H2O2 as 25-30% mixture with water. I didn't try it by myself and if I would do I would take a lot of precautions, there are some safety issues especially if you have little experience in this.

[Edited on 2-9-2020 by teodor]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 02:15


I think you need to start by looking up "sub distillation" i.e. "sub boiling distillation".
View user's profile View All Posts By User
zed
International Hazard
*****




Posts: 2284
Registered: 6-9-2008
Location: Great State of Jefferson, City of Portland
Member Is Offline

Mood: Semi-repentant Sith Lord

[*] posted on 2-9-2020 at 03:37


H2O2 is easy to concentrate. Problem is, it usually contains stabilizers that are easily concentrated too.

Easily concentrated, and hard to eliminate, when present in your final product. In years past, acetanilide was a common stabilizer. Might still be. I don't know. But, in some applications it presents a real problem.

The solution to this problem, is to start with H2O2 that doesn't contain stabilizing agents, that are gonna mess things up.

Oh yeah, and apparently H2O2 may be able to "etch" ordinary glasses. Thereby contaminating itself. Grrrr.

Gotta find a way to obtain "better" peroxide, if your work is critical.

An ancient paper on the subject, yet still so contemporary!
There may be numerous contaminants in commercial peroxide, and they may have to be contended with under some circumstances. Perhaps the author's difficulties, will provide illumination.
https://archive.org/details/interactionofpla00shaf/page/n1/m...



[Edited on 2-9-2020 by zed]
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 04:14


Quote: Originally posted by unionised  
I think you need to start by looking up "sub distillation" i.e. "sub boiling distillation".



Isn't this just slow distillation under BP? Woudn't it be enhanced by vacuum? (which also also would allow a significantly reduced rate of decomposition)

Your suggestion is good but I just want to be sure I correctly understand the process to follow and how efficient that would be. How much H2O2 can I expect to carry away with the water vapour into the receiver flask (i.e. what concentration can I expect in my receiver starting with my 9% material)?

[Edited on 2-9-2020 by VeritasC&E]
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 05:29


In theory, separation by freezing could be a route (assuming H2O2 is a bad solvent)

In practice however the process looks it could be very tedious (very close MPs), and hard to perform without contaminating the solution that is supposedly being purified.

In theory:

Freeze a portion of the solution > Pass through pre-cleaned Frit > Dilute again with Distilled Water > Mix Well > Repeat

The main problems I could see:

1) How to minimize H2O2 loss in the ice?
2) Contamination during filtration
3) Energy & Time Cost





[Edited on 2-9-2020 by VeritasC&E]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 08:14


Quote: Originally posted by VeritasC&E  
Quote: Originally posted by unionised  
I think you need to start by looking up "sub distillation" i.e. "sub boiling distillation".



Isn't this just slow distillation under BP? Woudn't it be enhanced by vacuum? (which also also would allow a significantly reduced rate of decomposition)

Your suggestion is good but I just want to be sure I correctly understand the process to follow and how efficient that would be. How much H2O2 can I expect to carry away with the water vapour into the receiver flask (i.e. what concentration can I expect in my receiver starting with my 9% material)?

[Edited on 2-9-2020 by VeritasC&E]


The important aspect is that you don't boil the material.
That way, you don't generate "spray" which carries over involatiles like stabilisers.
In principle, starting with 9% you end up with 9%.
But without any involatile materials.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 11:31


Quote: Originally posted by unionised  
Quote: Originally posted by VeritasC&E  
Quote: Originally posted by unionised  
I think you need to start by looking up "sub distillation" i.e. "sub boiling distillation".



Isn't this just slow distillation under BP? Woudn't it be enhanced by vacuum? (which also also would allow a significantly reduced rate of decomposition)

Your suggestion is good but I just want to be sure I correctly understand the process to follow and how efficient that would be. How much H2O2 can I expect to carry away with the water vapour into the receiver flask (i.e. what concentration can I expect in my receiver starting with my 9% material)?

[Edited on 2-9-2020 by VeritasC&E]


The important aspect is that you don't boil the material.
That way, you don't generate "spray" which carries over involatiles like stabilisers.
In principle, starting with 9% you end up with 9%.
But without any involatile materials.


But isn't there a significant BP difference between H2O and H2O2? Do they form an azeotrope? In which case, would you know within which proportions and parameters?

[Edited on 2-9-2020 by VeritasC&E]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 13:58


They might form an azeotrope, I think so, but I'd need to look it up.

However, an azeotrope is only relevant if you are boiling something and...
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 2-9-2020 at 22:16


Quote: Originally posted by unionised  
They might form an azeotrope, I think so, but I'd need to look it up.

However, an azeotrope is only relevant if you are boiling something and...


Yes, we are not boiling.

What I mean is that unless they behave like such, I don't understand quite why I would get in the receiver flask the same concentration as in the original concentration when the BP of the two miscibles are so far appart. Per my limited understanding, I wouldn't expect that to happen. I'm not sure how to use their relative vapour pressures but I'd expect that they could be used to indicate what the concentration in the receiver might look like (I would expect it to be lower, or even somewhat higher, but not the same as in the initial solution).

[Edited on 3-9-2020 by VeritasC&E]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 3-9-2020 at 00:00


Because, in principle, you evaporate all of the contents of the distillation flask and condense all of it in the receiver.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 3-9-2020 at 01:42


Quote: Originally posted by unionised  
Because, in principle, you evaporate all of the contents of the distillation flask and condense all of it in the receiver.


Is there no risk of overconcentrating the H2O2 in either the initial portion of the receiver or (more likely) in the very late portion of the source flask?

When only half of the solution has been carried over, do you know if the receiver will have an increased or rather a decreased H2O2 concentration?

I know 9% H2O2 is very safe, but I also know H2O2 vapours or more concentrated solutions can be dangerous, so it's important that I can visualize the dynamics of the process to know where H2O2 can get concentrated in case I need to do something to avoid it.

Thanks a lot for your contributions by the way!

[Edited on 3-9-2020 by VeritasC&E]
View user's profile View All Posts By User
teodor
National Hazard
****




Posts: 924
Registered: 28-6-2019
Location: Netherlands
Member Is Offline


[*] posted on 3-9-2020 at 02:01


Could the method of purification by crystallisation with pure urea or sodium carbonate be as good as distillation?

Also, you will unable to remove some usual tap water organic or gases like NH3 with a distillation. By the way, the presence of organic matter and small quantities of resulting organic peroxides probably is something which should be considered when performing distillation, what do you think?



[Edited on 3-9-2020 by teodor]

[Edited on 3-9-2020 by teodor]
View user's profile View All Posts By User
unionised
International Hazard
*****




Posts: 5128
Registered: 1-11-2003
Location: UK
Member Is Offline

Mood: No Mood

[*] posted on 3-9-2020 at 04:23


Quote: Originally posted by VeritasC&E  
Quote: Originally posted by unionised  
Because, in principle, you evaporate all of the contents of the distillation flask and condense all of it in the receiver.


Is there no risk of overconcentrating the H2O2 in either the initial portion of the receiver or (more likely) in the very late portion of the source flask?

When only half of the solution has been carried over, do you know if the receiver will have an increased or rather a decreased H2O2 concentration?

I know 9% H2O2 is very safe, but I also know H2O2 vapours or more concentrated solutions can be dangerous, so it's important that I can visualize the dynamics of the process to know where H2O2 can get concentrated in case I need to do something to avoid it.

Thanks a lot for your contributions by the way!

[Edited on 3-9-2020 by VeritasC&E]

When you are half way through, one container or the other will hold more than 9% H2O2
My guess is that water will evaporate preferentially at first leaving more concentrated H2O2 in the distillation flask and a more dilute solution in the receiver.
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 3-9-2020 at 05:21


Quote: Originally posted by unionised  
Quote: Originally posted by VeritasC&E  
Quote: Originally posted by unionised  
Because, in principle, you evaporate all of the contents of the distillation flask and condense all of it in the receiver.


Is there no risk of overconcentrating the H2O2 in either the initial portion of the receiver or (more likely) in the very late portion of the source flask?

When only half of the solution has been carried over, do you know if the receiver will have an increased or rather a decreased H2O2 concentration?

I know 9% H2O2 is very safe, but I also know H2O2 vapours or more concentrated solutions can be dangerous, so it's important that I can visualize the dynamics of the process to know where H2O2 can get concentrated in case I need to do something to avoid it.

Thanks a lot for your contributions by the way!

[Edited on 3-9-2020 by VeritasC&E]

When you are half way through, one container or the other will hold more than 9% H2O2
My guess is that water will evaporate preferentially at first leaving more concentrated H2O2 in the distillation flask and a more dilute solution in the receiver.


Is there no danger towards the end of the process?
View user's profile View All Posts By User
VeritasC&E
Hazard to Others
***




Posts: 176
Registered: 29-1-2018
Member Is Offline

Mood: No Mood

[*] posted on 3-9-2020 at 05:23


Quote: Originally posted by teodor  
Could the method of purification by crystallisation with pure urea or sodium carbonate be as good as distillation?

Also, you will unable to remove some usual tap water organic or gases like NH3 with a distillation. By the way, the presence of organic matter and small quantities of resulting organic peroxides probably is something which should be considered when performing distillation, what do you think?

[Edited on 3-9-2020 by teodor]


Hello! Could you describe that method?

[Edited on 3-9-2020 by VeritasC&E]
View user's profile View All Posts By User
Fyndium
International Hazard
*****




Posts: 1192
Registered: 12-7-2020
Location: Not in USA
Member Is Offline


[*] posted on 3-9-2020 at 06:27


I'm under impression H2O2 can be safely vacuum distilled to a high concentration.
View user's profile View All Posts By User
 Pages:  1  

  Go To Top