once your FeS is crushed/powdered, a lot of the un-reacted iron can be removed with a magnet
You used 258.5/55.845 = 4.63 moles of Fe, and 178.5/32.06 = 5.57 moles of S
so you should easily have more than your required 3.5 moles of FeS
Side note: you will end up with moles of Fe(II)Cl2 which may be worth keeping ?
(assuming that you use HCl to produce H2S from your FeS)
Your FeS has the potential to produce 100 litres of H2S gas ...
From Wikipedia;
0.00047 ppm or 0.47 ppb is the odor threshold, the point at which 50% of a human panel can detect the presence of an odor without being able to
identify it.[33]
10 ppm is the OSHA permissible exposure limit (PEL) (8 hour time-weighted average).[16]
10–20 ppm is the borderline concentration for eye irritation.
20 ppm is the acceptable ceiling concentration established by OSHA.[16]
50 ppm is the acceptable maximum peak above the ceiling concentration for an 8-hour shift, with a maximum duration of 10 minutes.[16]
50–100 ppm leads to eye damage.
At 100–150 ppm the olfactory nerve is paralyzed after a few inhalations, and the sense of smell disappears, often together with awareness of
danger.[34][35]
320–530 ppm leads to pulmonary edema with the possibility of death.[25]
530–1000 ppm causes strong stimulation of the central nervous system and rapid breathing, leading to loss of breathing.
800 ppm is the lethal concentration for 50% of humans for 5 minutes' exposure (LC50).
Concentrations over 1000 ppm cause immediate collapse with loss of breathing, even after inhalation of a single breath.
at this scale (4.5 mol) death from ONE lungfull = 1000 ppm equivalent to 100,000 litres = 4m x 5m x 5m = greater than the volume of a
typical amateur lab
OR
100 litres H2S @ 0.47 ppb = able to stink up an entire football stadium
I just felt that I had to mention this in case less experienced readers have a go.
[Edited on 15-3-2017 by Sulaiman] |