sol = DSolve[{Z'[t] ==
2*k3*(0.005747126436781609` (-5000.` -
29.` Z[t]) + (3.991060025542784`*^-31 \
(-3.60000112752`*^39 - 4.2486624`*^37 Z[t] -
1.21104`*^35 Z[t]^2))/(1.25000058725`*^23 +
2.2128453406053803`*^21 Z[t] +
1.2834501386019`*^19 Z[t]^2 + 2.3367185`*^16 Z[t]^3 +
150.68842025849233` \[Sqrt](-5.062677114182215`*^28 -
6.524644065161255`*^31 Z[t] -
2.1021533165696234`*^34 Z[t]^2 -
1.1499480491088463`*^34 Z[t]^3 -
1.9986292528062663`*^32 Z[t]^4 -
1.15510429551571`*^30 Z[t]^5 -
2.149028325`*^27 Z[t]^6))^(1/3) -
5.747126436781609`*^-7 (1.25000058725`*^23 +
2.2128453406053803`*^21 Z[t] +
1.2834501386019`*^19 Z[t]^2 + 2.3367185`*^16 Z[t]^3 +
150.68842025849233` \[Sqrt](-5.062677114182215`*^28 -
6.524644065161255`*^31 Z[t] -
2.1021533165696234`*^34 Z[t]^2 -
1.1499480491088463`*^34 Z[t]^3 -
1.9986292528062663`*^32 Z[t]^4 -
1.15510429551571`*^30 Z[t]^5 -
2.149028325`*^27 Z[t]^6))^(1/3))^2 - k33*Z[t],
Z[0] == 0}, Z[t], t] |