2-Phenylpropanal can be rearranged with either mercuric chloride (HgCl2) or sulfuric acid (H2SO4) to form the isomeric phenyl-2-Propanone (P2P).
2-Phenyl-propanal (hydratropic aldehyde) is used in the perfume industry. 2-phenylpropanal can also be made from alpha-methylstyrene.
The CAS number for 2-phenyl-propanal is [93-53-8], and synonyms for it include Hydratropic aldehyde; 2-Phenylpropionaldehyde; Cumenealdehyde;
alpha-methyl benzeneacetaldehyde and alpha-methyl phenylacetaldehyde. Boiling point 92-94°C/12mmHg, 222°C/760mmHg.
There are other ways of performing this rearrangement, 2-phenylpropanal is isomerized to phenyl-2-propanone in up to 87% yield by passing its vapor
over an iron zeolite catalyst bed at 500°C, followed by condensation of the vapors and redistilling the P2P.
Even if the method below which uses mercuric chloride is higher yielding than the one using cold sulfuric acid, I would definitely reccommend the one
with sulfuric acid, as it is much cheaper to use, and is not disastrous for your health or the environment. 60g of mercuric chloride contains 45 grams
of mercury, enough to poison a medium-sized lake if released into the environment, and if you happen to ingest it yourself, it will accumulate in your
body.
It is not possible to effectively separate 2-phenylpropanal (bp 222°C/760mmHg) from phenyl-2-propanone (bp 214°C/760mmHg) through simple
distillation and certainly not via vacuum distillation as the boiling points are too close. Fractional distillation could theoretically be used to
separate them, but the size of the column that would have to be used makes that option impractical. A good idea for separating a mixture of the two is
to oxidize the mixture with a mild oxidant which won't affect the P2P, but which will oxidize the aldehyde to 2-phenylpropionic acid. The acid can
then be separated from the ketone by dissolving the mixture in a non-polar solvent and washing the solution with dilute sodium hydroxide. The P2P
stays in the organic layer, which is then dried over MgSO4, the solvent removed under vacuum and the residue vacuum distilled to give pure P2P.
Method A
30g of 2-phenylpropanal is heated together with a mixture of 60g mercuric chloride (HgCl2, 1 eq.) and 450ml 75% ethanol in a pressure-safe sealed
glass container for 4.5h at 100°C in a boiling water bath, during which time a precipitate forms. Water is added, and the solution is steam-distilled
(during which operation the precipitate redissolves). The distillate is extracted with ether, dried, and the solvent is evaporated. The oily residue
is then vacuum distilled with a fractionating column to collect the phenyl-2-propanone in a yield of 80% or more, bp 92-101°C at 14mmHg. When 0.1
equivalents of HgCl2 was used, only 10% phenyl-2-propanone was formed, the rest consisted of unchanged aldehyde.
Method B
9 g of 2-phenylpropanal is slowly added with good stirring during 35 minutes to 40ml concentrated sulfuric acid, while the temperature of the reaction
mixture is kept at -16°C. After all the 2-phenylpropanal has been added, the mixture is allowed to stand at the same temperature for another 15
minutes, and then the mixture is poured onto crushed ice (100-150g is probably a suitable amount). When the ice has melted, the organics are extracted
from the water phase by 3x50ml diethyl ether, the pooled organic phases dried over MgSO4, the ether distilled off and finally the residue is vacuum
distilled (bp 91-96°C at 11 mmHg) to give 5.6g (62%) of phenyl-2-propanone. |