I checked the Internet, and was a bit surprised to see so many obtuse and convoluted preparations for such a simple reagent. No, there is no chlorine
gas or high temperatures required. Basically you need HCl solution, some hydrogen peroxide, some copper metal (preferably fine-stranded copper wire),
and a glass bottle with a good seal for storage.
Copper metal is stirred with HCl solution (with a stir bar on a stir plate) and hydrogen peroxide is added gradually to dissolve the copper. Add
excess copper and a slight excess of HCl, so that hydrogen peroxide is the limiting reagent. Some heating will speed this up, and will help remove
excess water if your peroxide is only the 3% variety. I don't suggest heating if you're using the 10-30% peroxide, as the reaction will heat itself.
Once you have an appreciable amount of copper dissolved into solution, make sure the pH is still low, that you maintain an excess of copper metal in
the solution, and then evaporate down the solution with heat to concentrate it. The idea for this is to make sure that all of the residual peroxide
has been reacted. At this point you have mostly CuCl2. By pouring the solution into the bottle and adding a large wad of excess copper
wire, this will reduce to CuCl over time...faster with stirring though. If there isn't enough HCl in solution then you may notice some white crystals
of CuCl knocking about the bottom of the bottle. This is fine, but they can be dissolved by adding more HCl.
Or, you can just buy CuCl2 and stir it with copper wire and some HCl, and skip a few steps.
Anyway, the bottle has to be kept sealed, as it will remove oxygen from the atmosphere and reoxidize to CuCl2. The solution can be
regenerated as needed by adding more copper metal and HCl. |