Prepare HOCl and a precipitate of CaCO3 from 2 NaOCl + CaCl2 + 2 NaHCO3.
The fine precipitate of CaCO3 is photo catalytic (as are carbonates in general in select light releasing an electron and the very acidic carbonate
radical, see https://pubs.acs.org/doi/abs/10.1021/j100909a029?journalCode... and my Acidic Radicals thread at http://www.sciencemadness.org/talk/viewthread.php?tid=94166#... ). Note, with the electron in the presence of an acid source, e- + H+ = •H, the
very powerful hydrogen atom reducing radical (think nascent hydrogen), which will attack NO3- and create OH- and NO2, also •H + ClO3- = OH- +
ClO2,..., and with more •H, even further reduction is possible.
............
Prepare Singlet Oxygen (see http://www.sciencemadness.org/talk/viewthread.php?tid=31729#... ) which with oxygen may make some very strong (but transient) oxidizing atomic
oxygen ......
Source on atomic oxygen: See Eq 4 at http://olab.physics.sjtu.edu.cn/papers/2017/29.Huan%20Yue_PC... , where apparently, O(3P) is created from severe collision quenching of O(1D) atom
with air or oxygen and acts as the major oxidant in the work by Huan Yue and colleagues ‘Exploring the working mechanism of graphene patterning by
magnetic-assisted UV ozonation’. Note, O(3P) is also known as highly reactive ground-state 3P oxygen and a form of atomic oxygen.
Photolysis may also be a path to perchlorates. To quote a source (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/200... ):
"[20] A role for water ice as a reaction surface for adsorbed species may be a possible path to perchlorate chemistry. ClO radicals are readily
produced by atmospheric oxidation of chlorine volatiles, and ClO can interact on ice to produce OClO when the ice sublimates [McKeachie et al., 2004].
Chlorine dioxide (the OClO molecule is not to be confused with Cl‐O‐O, which is the chlorine peroxy radical, unfortunately also sometimes called
“chlorine dioxide”) is a possible source of perchlorate because it can react with O3 or O to make chlorine trioxide [Wayne et al., 1995]:"
Followed by:
•OH + •ClO3 = HClO4
And while •ClO is easy formed by the action of a radical (•OH or •CO3-) on the hypochlorite ion in common bleach:
•OH + ClO- = OH- + •ClO
the whole sublimation of •ClO + ice under UV is likely a bridge too far as a path to •OClO radical. However, per another source (https://www.researchgate.net/publication/222104943_Observati... ):
"The ClO + BrO reaction is presently believed to be the only source of OClO in the stratosphere, although several studies show this reaction system to
severely underestimate OClO production in this atmospheric subsystem"
Is a more likely path to the OClO radical, albeit slow, per the following reaction forming BrO- from added Br- and with radicals, •BrO :
OCl- + Br- = Cl- + BrO- (see http://old.sustainability.gatech.edu/publications/Ozone_Brom... )
just add hydroxyl radicals (from say the UV photolysis of aqueous N2O or the action of HOCl on Fe(ll) , or the action of microwaves on activated
carbon, ...) to the system together with atomic oxygen. Speculation? Perhaps or not (see https://www.researchgate.net/publication/250142618_Bromate_c... and https://awwa.onlinelibrary.wiley.com/doi/full/10.5942/jawwa.... ).
[Edited on 25-12-2018 by AJKOER] |