Introduction
3,3-Sigmatropic rearrangements are defined as uncatalyzed processes to migrate
a sigma bond of two connected allyl systems from position 1 to position 3.That
means both allyl systems suffer from an allyl inversion. Though described for
the first time in 1940, the Cope rearrangement can be considered as the basic
type of such a process, since C–C bonds only are reorganized during the course
of the reaction [1].More than two decades earlier, in 1912, L. Claisen first described
the rearrangement of aromatic allyl vinyl ethers to generate o-allyl
phenols [2]. This so-called Claisen rearrangement is characterized by the replacement
of the C3 carbon of the rearrangement system against a heteroatom
X. The basic Claisen rearrangement bears X=O; consequently, such a process can
be termed as a 3-oxa Cope rearrangement. Analyzing the literature, rearrangement
systems displaying other heteroatoms X in position 3 can be found as hetero
Claisen and 3-hetero Cope rearrangements.Focussing on systems with X=N,
names such as aza- and amino-Claisen as well as 3-aza-Cope rearrangement
occur in the literature.Furthermore, the term aza/amino Claisen rearrangement
is widely used for nitrogen introduction processes rearranging 1-aza-3-oxy-
Cope systems (imidates) to generate carbamates. Finally, the Fischer indole
synthesis represents a special type of aza-Claisen rearrangement incorporating
two N atoms in the 3 and 4 positions of the rearrangement system.
Intending to set a firm basis concerning the notion of the sigmatropic
rearrangements, the following review will use the term Claisen rearrangement
for 3,3-sigmatropic core systems incorporating a heteroatom X in position 3, i.e.,
an aza-Claisen-type rearrangement is characterized by X=nitrogen (Fig. 1). |