Karl Fischer titration
This article is a stub. Please help Sciencemadness Wiki by expanding it, adding pictures, and improving existing text.
|
Karl-Fischer titration, often shortened to KF titration, is an iodometric titration technique for the determination of water content in a sample.
The KF reagents contain, as a minimum, elemental [[iodine], sulfur dioxide, and a suitable base.
In aqueous solution, sulfur dioxide and iodine react as follows (Bunsen reaction):
- 2H2O + I2 + SO2 ⇌ H2SO4 + 2HI
However, in KF titration, other similar reactions dominate due to solvent interactions. Depending on the solvent, the ratio H2 : I2 may vary from 2 : 1 to 1 : 1.
Base
A base must be present in order to buffer the solution to drive the equilibrium. Fischer's original reagent used pyridine, however modern KF reagents tend to use other bases like imidazole or pyridine derivatives, due to the volatility, toxicity, and unpleasant odour of pyridine.
Solvent
Normally, the reagent components are dissolved in a primary alcohol such as methanol, ethanol, or methyl cellosolve (ethylene glycol monomethyl ether). Alcoholic solvents like these give 1 : 1 reaction stoichiometry.
In these cases, sulfur dioxide reacts with the alcohol to produce the corresponding alkyl sulfite, which is an intermediate in the reaction. Non-alcoholic KF reagents are also possible, however the reaction mechanism and stoichiometry changes, and the overall system becomes much more sensitive to sample composition. For this reason non-alcoholic KF reagents are seldom used.
Errors in the original Fischer paper
Fischer's 1935 paper discussed pyridine adducts being key to the reaction, and assumes that the methanol used served only as a solvent. The equation presented in his paper was:
- 2H2O + SO2.2Py + I2 + 2Py → H2SO4.2Py + 2(HI.Py)
where Py = pyridine = C5H5N.
The left hand side of this equation gives the ratio H2O : I2 : SO2 : Pyridine = 2 : 1 : 1 : 4. However, this was later determined by Smith, Bryant, and Mitchell to be an incorrect ratio when methanolic solutions are used. They determined the ratio was H2O : I2 : SO2 : Pyridine : Methanol = 1 : 1 : 1 : 3 : 1. This gives the following equations:
- H2O + SO2 + I2 + 3Py → SO3.Py + 2(HI.Py)
- SO3.Py + MeOH → Py.HSO4Me
Verhoef and Barendrecht later determined that the above equations were incorrect, and that the reaction actually proceeds via monomethyl sulfite ion produced by the reaction of SO2 and methanol:
- 2 CH3OH + SO2 ⇌ CH3OH2+ + SO3CH3-
They also determined that pyridine's only role in the reaction is as a buffering agent. Therefore, pyridine can be replaced by other organic bases (denoted RN). Adding the base shifts the equilibrium of the above equation to the right:
- CH3OH + SO2 + RN → [RNH]SO3CH3
The KF titration reaction can then be formulated as:
- H2O + I2 + [RNH]+ SO3CH3- + 2 RN → [RNH]+ SO4CH3- + 2 [RNH]+ I-
Notice that this equation follows the 1:1:1:3:1 ratio determined empirically by Smith, Bryant, and Mitchell.
However, the original Fischer stoichiometry, having H2O : I2 = 2 : 1 is correct in some circumstances when aprotic solvents are used. This probably explains Fischer's error, as he originally used benzene as a solvent. In some solvents, or mixtures of solvents, the reaction proceeds via multiple routes and therefore the overall reaction is non-stoichiometric. This is a particular problem with non-alcoholic KF reagents because if a sample contains a protic solvent then the stoichiometry will change over the course of the titration since the solvent composition also changes. For this reason, KF reagents are typically made as alcoholic solutions. Long-chain alcohols form the intermediate alkyl sulfite less readily, so methanol is commonly used.