Fluorine
General properties | |||||
---|---|---|---|---|---|
Name, symbol | Fluorine, F | ||||
Allotropes | Alpha, beta | ||||
Appearance |
Gas: very pale yellow Liquid: bright yellow Solid: alpha is opaque, beta is transparent | ||||
Fluorine in the periodic table | |||||
| |||||
Atomic number | 9 | ||||
Standard atomic weight (Ar) | 18.998403163(6) | ||||
Group, block | (halogens); p-block | ||||
Period | period 2 | ||||
Electron configuration | [He] 2s2 2p5 | ||||
per shell | 2, 7 | ||||
Physical properties | |||||
Pale yellow | |||||
Phase | Gas | ||||
Melting point | 53.48 K (−219.67 °C, −363.41 °F) | ||||
Boiling point | 85.03 K (−188.11 °C, −306.60 °F) | ||||
Density at (0 °C and 101.325 kPa) | 1.696 g/L | ||||
when liquid, at | 1.505 g/cm3 | ||||
Triple point | 53.48 K, 90 kPa | ||||
Critical point | 144.41 K, 5.1724 MPa | ||||
Heat of | 6.51 kJ/mol | ||||
pressure | |||||
Atomic properties | |||||
Oxidation states | −1 | ||||
Electronegativity | Pauling scale: 3.98 (most electronegative element) | ||||
energies |
1st: 1681 kJ/mol 2nd: 3374 kJ/mol 3rd: 6147 kJ/mol | ||||
Covalent radius | 64 pm | ||||
Van der Waals radius | 135 pm | ||||
Miscellanea | |||||
Crystal structure | Cubic | ||||
Thermal conductivity | 0.02591 W/(m·K) | ||||
CAS Registry Number | 7782-41-4 | ||||
History | |||||
Naming | After the mineral fluorite, itself named after Latin fluo (to flow, in smelting) | ||||
Discovery | André-Marie Ampère (1810) | ||||
First isolation | Henri Moissan (26 June 1886) | ||||
Named by | Humphry Davy | ||||
Fluorine is a halogen too toxic and far too reactive to be considered for use in a home chemistry setting. It is one of the most powerful oxidizers known. Fluorine has the chemical symbol F.
Contents
Properties
Chemical
Fluorine is so reactive that it will react and oxidize most known substances, often bursting them into flames if done near room temperature. This includes glass and unpassivated steel.
When the gas is needed, a specialized nickel alloy (commonly monel or some other cupronickel alloy) is used for any tubing as it forms a passivation layer that prevents the destructive oxidation that would occur if any other material was used.
Physical
Fluorine is a pale yellow color, although very specialized equipment is needed to see this color. It is nearly impossible to store in a way that it can be viewed, due to its extreme reactivity.
Availability
Very few businesses have or need the facilities to cope with elemental fluorine, so obtaining a cylinder of the gas is basically impossible (and suicidal without highly specialized equipment).
Even element samples are virtually impossible to make or obtain due to the inability to store fluorine without it reacting. Since it reacts with glass, calcium fluoride is often substituted for fluorine in an element collection. It may, however, be possible to store impure fluorine mixed with helium without risking contamination or destruction of the sample.
Preparation
A method of producing fluorine purely chemically was discovered, but it is highly obscure and requires chemicals like antimony pentafluoride (which requires fluorine to be produced anyway). The only method therefore is electrolysis of molten ammonium bifluoride. Needless to say, this procedure is difficult to safely perform even by professional chemists.
Projects
- Do something else
Handling
Safety
Do not attempt to make this gas. There's a reason some of the people who did research on fluorine are known as "fluorine martyrs." Apart from extreme reactivity issues, all fluoride salts are highly toxic and high amounts of toxic hydrogen fluoride will be made in any attempt. There are much better things to do in chemistry, so why not try something that you will survive. Neither is it a cheap, useful, or painless way to commit suicide, as it starts fires on contact with anything it touches.
Storage
Not possible, will react with almost everything.
Disposal
If elemental fluorine was somehow produced, you need to vent it outside.