Difference between revisions of "Lead(II) acetate"
(Created page with "{{stub}} '''Lead(II) acetate''' is a toxic compound with a chemical formula of Pb(CH<sub>3</sub>COOH)<sub>2</sub> that is often encountered during home chemistry with lead...") |
(No difference)
|
Revision as of 05:07, 14 June 2015
This article is a stub. Please help Sciencemadness Wiki by expanding it, adding pictures, and improving existing text.
|
Lead(II) acetate is a toxic compound with a chemical formula of Pb(CH3COOH)2 that is often encountered during home chemistry with lead, due to its high solubility compared to most other lead compounds. It is also easy to prepare with common household chemicals.
Contents
Properties
Chemical
Lead(II) acetate will precipitate lead(II) chloride and lead(II) sulfate on addition of the corresponding strong mineral acids, but lead(II) nitrate will not precipitate in this way, due to relative high solubility.
Lead(II) acetate reacts with hydrogen sulfide to from a grey precipitate of lead(II) sulfide. Because of the stark color change, this reaction can be used as a test for the presence of hydrogen sulfide.
Physical
Lead acetate forms clear transparent crystals that dissolve to form a colorless solution. It is soluble in water, methanol, ethanol, glycerol.
Lead acetate is highly poisonous, in this way it is rather similar to barium acetate.
Availability
Due to their toxicity, lead salts have been replaced by less toxic compounds in most applications. Therefore, lead acetate is really only available bought as a chemistry reagent. Toxicity does not generally affect a shipping cost the same way that reactive or dangerous chemicals such as sodium metal have a high shipping cost, therefore online purchasing of lead acetate can be economical.
Preparation
Lead(II) acetate can be formed by adding lead in a solution of acetic acid and hydrogen peroxide. It can also form from the action of acetic acid on several lead compounds, such as lead hydroxide, oxide or carbonate.
Projects
Many lead compounds such as lead(II) chloride and lead(II) sulfate are poorly soluble in water. However lead(II) acetate is soluble, so it creates lead(II) ions in solution. This is useful for double displacement reactions that precipitate a desired insoluble lead salt like lead(II) picrate, from a solution of lead acetate and picric acid.
Other:
- THF synthesis
- Glacial acetic acid
- Lead(IV) acetate synthesis
Handling
Safety
Lead salts are highly toxic. Many home chemists will refuse to work with lead, as accidental exposure is far too easy to do, and lead will stay in your body each time this happens, accumulating and poisoning you. Lead(II) acetate is more dangerous as it is a soluble form of the lead(II) ion, making it more easily accessed by the internal workings of your body.
Lead(II) acetate also has the misfortune of being quite sweet and potentially mistaken for sugar, even though gram quantities could kill a fully grown man. Therefore proper labeling and storage of this compound is of high importance, as the danger of the salt appears low on observation of the solid or solution not only to you but to small creatures such as pets as well.
Storage
Lead(II) acetate should be stored in closed bottles, in a cool, dry, well ventilated place.
Disposal
Dealing with lead carries the burden of responsible disposal of any waste compounds, especially soluble ones. Lead is a serious environmental toxin, and will stay in the ground for years or make its way to the food chain if simply dumped. The least one can do is reduce the toxic salts back to the metal, which is not such an environmental pollutant (the metal still needs to be responsibly disposed of as well however).