Difference between revisions of "Boron trioxide"

From Sciencemadness Wiki
Jump to: navigation, search
(Relevant Sciencemadness threads)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{Chembox
 
{{Chembox
| Name =Boron trioxide
+
| Name = Boron trioxide
 
| Reference =
 
| Reference =
| IUPACName =Boron trioxide
+
| IUPACName = Boron trioxide
 
| PIN =
 
| PIN =
 
| SystematicName =
 
| SystematicName =
| OtherNames = {{Unbulleted list
+
| OtherNames = Boria<br>Boric anhydride<br>Boric oxide<br>Boron sesquioxide<br>Diboron trioxide
  | ''name1''
+
  | ''name2''
+
  ...
+
  | ''name50''
+
  }}
+
 
<!-- Images -->
 
<!-- Images -->
| ImageFile =File:B2O3.JPG  
+
| ImageFile = File:B2O3.JPG  
| ImageSize =  
+
| ImageSize = 250
 
| ImageAlt =  
 
| ImageAlt =  
 
| ImageName =  
 
| ImageName =  
Line 52: Line 47:
 
| Section2 = {{Chembox Properties
 
| Section2 = {{Chembox Properties
 
| AtmosphericOHRateConstant =  
 
| AtmosphericOHRateConstant =  
| Appearance =Hard glassy solid or white powder.
+
| Appearance = Hard glassy solid or white powder.
| BoilingPt = 1,860 °C (3,380 °F; 2,130 K)
+
| BoilingPt =
| BoilingPtC =  
+
| BoilingPtC = 1,860
 
| BoilingPt_ref =  
 
| BoilingPt_ref =  
 
| BoilingPt_notes =  
 
| BoilingPt_notes =  
| Density = 2.460 g/cm<sup>3</sup>, liquid;<br/>
+
| Density = 2.460 g/cm<sup>3</sup> (liquid)<br>2.55 g/cm<sup>3</sup> (trigonal)<br>3.11–3.146 g/cm<sup>3</sup> (monoclinic)
2.55 g/cm<sup>3</sup>, trigonal;<br/>
+
| Formula = B<sub>2</sub>O<sub>3</sub>
3.11–3.146 g/cm<sup>3</sup>, monoclinic
+
| Formula =B<sub>2</sub>O<sub>3</sub>
+
 
| HenryConstant =  
 
| HenryConstant =  
 
| LogP =  
 
| LogP =  
| MolarMass =  
+
| MolarMass = 69.6182 g/mol
| MeltingPt = 450 °C (842 °F; 723 K)
+
| MeltingPt =
| MeltingPtC =  
+
| MeltingPtC = 450-510
 
| MeltingPt_ref =  
 
| MeltingPt_ref =  
| MeltingPt_notes =  
+
| MeltingPt_notes = (trigonal)<br>510 °C (950 °F; 783 K) (tetrahedral)
| pKa =  
+
| Odor = Odorless
 +
| pKa = ~ 4
 
| pKb =  
 
| pKb =  
| Solubility =  
+
| Solubility = 1.1 g/100 ml (10 °C)<br>2.77 g/100 ml (20 °C)<br>3.6 g/100 ml (25 °C)<br>15.7 100 g/100 ml (100 °C)
| SolubleOther = methanol
+
| SolubleOther = Soluble in [[ethanol]], [[glycerol]], [[methanol]]
 
| Solvent =  
 
| Solvent =  
| VaporPressure =  
+
| VaporPressure = ~0 mmHg
 
   }}
 
   }}
 
| Section3 = {{Chembox Structure
 
| Section3 = {{Chembox Structure
Line 81: Line 75:
 
   }}
 
   }}
 
| Section4 = {{Chembox Thermochemistry
 
| Section4 = {{Chembox Thermochemistry
| DeltaGf =  
+
| DeltaGf = -832 kJ/mol
 
| DeltaHc =  
 
| DeltaHc =  
| DeltaHf =  
+
| DeltaHf = -1254 kJ/mol
| Entropy =  
+
| Entropy = 80.8 J·mol<sup>-1</sup>·K<sup>-1</sup>
| HeatCapacity =  
+
| HeatCapacity = 66.9 J·mol<sup>-1</sup>·K<sup>-1</sup>
 
   }}
 
   }}
 
| Section5 = {{Chembox Explosive
 
| Section5 = {{Chembox Explosive
Line 94: Line 88:
 
   }}
 
   }}
 
| Section6 = {{Chembox Hazards
 
| Section6 = {{Chembox Hazards
| AutoignitionPt =  
+
| AutoignitionPt = Non-flammable
| ExploLimits =  
+
| ExploLimits = Non-explosive
| ExternalMSDS =  
+
| ExternalMSDS = [https://www.docdroid.net/WMwQzxq/boron-trioxide-sa.pdf.html Sigma-Aldrich]
| FlashPt =  
+
| FlashPt = Non-flammable
| LD50 =  
+
| LD50 = 3,163 mg/kg (mouse, oral)
 
| LC50 =  
 
| LC50 =  
| MainHazards =  
+
| MainHazards = Irritant
 
| NFPA-F =  
 
| NFPA-F =  
 
| NFPA-H =  
 
| NFPA-H =  
Line 111: Line 105:
 
| OtherFunction =  
 
| OtherFunction =  
 
| OtherFunction_label =  
 
| OtherFunction_label =  
| OtherCompounds =  
+
| OtherCompounds = [[Boric acid]]<br>[[Borax]]
 
   }}
 
   }}
 
}}
 
}}
'''Boron trioxide''' is a glass like solid or white powder with the chemical formula B<sub>2</sub>O<sub>3</sub>.
+
'''Boron trioxide''' is a glass like solid or white powder with the chemical formula '''B<sub>2</sub>O<sub>3</sub>'''.
  
 
==Properties==
 
==Properties==
 
===Chemical===
 
===Chemical===
Boron trioxide is very unreactive.  
+
Boron trioxide is very unreactive towards most common reagents. While an anhydride oxide, it does not react with water visibly.
It can however be reduced to elemental boron with [[magnesium]] or [[aluminum]] powder in a thermite reaction.
+
 
 +
It can however be reduced to elemental boron with [[magnesium]] powder in a thermite reaction. Magnesium boride is produces as side product. A similar effect occurs when powdered [[aluminium]] is used, though aluminium not not give a good yield.  
  
 
===Physical===
 
===Physical===
When produced from boric acid, it forms as a non crystaline mass that is very hard and difficuilt to grind, forming a very fine powder when ground very similar to a solid plane of glass.
+
When produced from boric acid, it forms as a non crystalline mass that is very hard and difficult to grind, forming a very fine powder when ground very similar to a solid plane of glass.
  
 
==Availability==
 
==Availability==
Line 128: Line 123:
  
 
==Preparation==
 
==Preparation==
Boric acid can be dehydrated above 300 degrees to form boron trioxide. Boron trioxide does not reabsorb this water from the atmosphere so is stable at room temperature.  
+
Boric acid can be dehydrated above 300 degrees to form boron trioxide. Boron trioxide prepared at up to 800 degrees is a desiccant but it is slow acting if not finely powdered. Made at higher temperature it has an induction period.
  
 
==Projects==
 
==Projects==
* Producing [[boron]]
+
* Producing elemental [[boron]]
 
* Making the ester [[trimethyl borate]]
 
* Making the ester [[trimethyl borate]]
 +
* Fluxing agent for glass and enamels
 +
* Acid catalyst in organic synthesis
  
 
==Handling==
 
==Handling==
 
===Safety===
 
===Safety===
 +
Boron trioxide has low toxicity, though it is irritant to skin, mouth, nose and eyes.
  
 
===Storage===
 
===Storage===
No special storage is required, storing it in closed bottles is fairly enough.
+
No special storage is required, storing it in closed plastic bottles is good enough.
  
 
===Disposal===
 
===Disposal===
 +
Can be dumped in trash.
  
 
==References==
 
==References==
 
<references/>
 
<references/>
 
===Relevant Sciencemadness threads===
 
===Relevant Sciencemadness threads===
 +
*[http://www.sciencemadness.org/talk/viewthread.php?tid=72000 Boron oxide reduction using sodium?]
 +
*[http://www.sciencemadness.org/talk/viewthread.php?tid=73825 Boron oxide reduction with Aluminium?]
  
 
[[Category:Chemical compounds]]
 
[[Category:Chemical compounds]]
Line 151: Line 152:
 
[[Category:Oxides]]
 
[[Category:Oxides]]
 
[[Category:Inorganic acid anhydrides]]
 
[[Category:Inorganic acid anhydrides]]
 +
[[Category:Irritants]]

Latest revision as of 20:46, 12 April 2019

Boron trioxide
B2O3.JPG
Names
IUPAC name
Boron trioxide
Other names
Boria
Boric anhydride
Boric oxide
Boron sesquioxide
Diboron trioxide
Properties
B2O3
Molar mass 69.6182 g/mol
Appearance Hard glassy solid or white powder.
Odor Odorless
Density 2.460 g/cm3 (liquid)
2.55 g/cm3 (trigonal)
3.11–3.146 g/cm3 (monoclinic)
Melting point 450–510 °C (842–950 °F; 723–783 K) (trigonal)
510 °C (950 °F; 783 K) (tetrahedral)
Boiling point 1,860 °C (3,380 °F; 2,130 K)
1.1 g/100 ml (10 °C)
2.77 g/100 ml (20 °C)
3.6 g/100 ml (25 °C)
15.7 100 g/100 ml (100 °C)
Solubility Soluble in ethanol, glycerol, methanol
Vapor pressure ~0 mmHg
Acidity (pKa) ~ 4
Thermochemistry
80.8 J·mol-1·K-1
-1254 kJ/mol
Hazards
Safety data sheet Sigma-Aldrich
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
3,163 mg/kg (mouse, oral)
Related compounds
Related compounds
Boric acid
Borax
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Boron trioxide is a glass like solid or white powder with the chemical formula B2O3.

Properties

Chemical

Boron trioxide is very unreactive towards most common reagents. While an anhydride oxide, it does not react with water visibly.

It can however be reduced to elemental boron with magnesium powder in a thermite reaction. Magnesium boride is produces as side product. A similar effect occurs when powdered aluminium is used, though aluminium not not give a good yield.

Physical

When produced from boric acid, it forms as a non crystalline mass that is very hard and difficult to grind, forming a very fine powder when ground very similar to a solid plane of glass.

Availability

It is used in glassmaking, whether as a boron additive for making borosilicate glass or as a fluxing agent so this may be a source, however it is easy to produce from the starting materials boric acid or borax.

Preparation

Boric acid can be dehydrated above 300 degrees to form boron trioxide. Boron trioxide prepared at up to 800 degrees is a desiccant but it is slow acting if not finely powdered. Made at higher temperature it has an induction period.

Projects

  • Producing elemental boron
  • Making the ester trimethyl borate
  • Fluxing agent for glass and enamels
  • Acid catalyst in organic synthesis

Handling

Safety

Boron trioxide has low toxicity, though it is irritant to skin, mouth, nose and eyes.

Storage

No special storage is required, storing it in closed plastic bottles is good enough.

Disposal

Can be dumped in trash.

References

Relevant Sciencemadness threads