DIELECTRIC PROPERTIES OF NITROBENZENE

the dielectric constant may rise with increasing tem-
perature because of the effect of temperature on the
relaxation time. There is a frequency region in which
the two effects tend to cancel, making the dielectric
constant insensitive to changes in temperature. This
unique property of polar liquids suggests uses in
matched terminations or in calorimetric measurement
of power where dielectrics are desired whose properties
do not change with temperature.

As for the frequency limitation on nitrobenzene as a
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Kerr medium, the behavior of the dielectric constant
indicates that dipole polarization above 1000 mcps
falls away rapidly with increasing frequency.
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This paper develops a model for the dissipation of the tracks of high-energy particles. It is assumed that all
chemical effects are due to one kind of radical and that there are no effects of overlapping of neighboring
tracks, i.e., that there is a sufficiently high concentration of scavenger to prevent such overlapping. The
model of Samuel and Magee is used and extended to take into account the interaction of randomly dis-
tributed spurs along the track. Calculated values of the extent of scavenger reactions and radical reactions
are presented in graphical form. General trends of experimental results to be expected according to the model
are indicated. Quantitative correlation with experiments was not attempted because of the uncertainty in
the values of various parameters used and because of the serious limitations of the one-radical model of tracks.

INTRODUCTION

ECENT paperst® have developed the theory of
diffusion and reaction of radicals in the tracks of
ionizing particles in liquids. These treatments generally
follow the lines set forth by Jaffe® in his pioneering study
of the ionization density in columnar tracks. Lea’
pointed out that high-energy electrons do not form
columns, but more or less isolated “spurs,”} and this
fact has been recognized in most subsequent work.

In this paper the authors have studied a model for a
particle track which consists of a series of spurs ran-
domly spaced along the linear trajectory of the particle.
A Gaussian distribution for the position of the radicals
in a spur is assumed, and all spurs are assumed to have
the same number of radicals. The treatment used here
only applies to the “low background” case, i.e., the
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case in which sufficient “scavenger” is present to react
with the radicals of a track before they intermingle with
radicals from adjacent tracks. The intermingling of
radicals from adjacent spurs of the same track is, how-
ever, taken into account and the concentration of the
scavenger is also varied.

A chemical reaction mechanism for the one-radical
track can be given as

R+R—R,, (a)
R+S5—RS, (b)
where R and S stand for radical and scavenger, re-

spectively.

The emphasis in this paper is upon a study of the
method for treatment of the competition of reactions
(a) and (b) in a track which is expanding by diffusion.
Although this is a one-radical model, it may be possible
that the radiation chemistry of water can be under-
stood essentially on the basis of this model.>~% We have
used only “average’ spurs of six radicals each and a
study has not been made of the effect of actual spur-size
distribution. Recently Gray® has made a study along
different lines in which there was a significant effect
attributed to the highly ionizing delta rays.

81.. H. Gray, 5¢ Réunion, Société de Chimie Physique, Paris,
1955.
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TRACK STRUCTURE

The track is taken as a linear arrangement of spurs.
Radicals in each spur are in spherically symmetrical
Gaussian distribution round the center of the spur.
It is assumed further that the Gaussian distribution is
maintained throughout the lifetime of a spur. This is the
use of “prescribed diffusion.”” All spurs have the same
initial number of radicals, formed by the absorption of
the same amount of primary energy (e). In every region
of the track the spurs occur randomly and their average
spacings along the finite length of the track decreases
exponentially with the residual range [see Eq. (3)
below]. From the experimental range-energy relations
of Geiger® with a-particles, Katz and Penfold® with
B particles, and Wilson’s!! approximate range-energy
relation for protons derived from Bethe’s stopping
power formula, a general expression for range and energy
for an ionizing particle can be written in the form,

@

where R is the mean range of the particle of energy E,
and R—p is the residual range of the same when the
energy is reduced to E,, 5 is a not-too-sensitive function
of energy E, and can be evaluated from experimental
values of range. Energy density along the track is then
given by

dE, E, 1

e @
dp R [1—(o/R)J 1

and the average spacing Z; of spurs at any point p on
the track is given by

dp 617R p (—1)/n
Z1=e———=———(1———) 3)
dE, E, R

Taking the axis of the track along the z direction, the
concentration of radicals ¢(r,z,7) at a distance 7 from
the point z on the axis at any time 7 equal or larger than
a certain initial time f is given by

(—r/4D7) » (-2
c(r,z,r>=3p?4w—;;)—i—§lwexp(— sz ) @)

where »; is the total number of radicals that originated
in the sth spur surviving up to the time 7, z; is the co-
ordinate of the center of the spur from the same arbi-
trary origin, # is the total number of spurs in the track
[equal to (Eo/e)], and D is the diffusion coefficient of
the radicals. At the initial time #={, the radical concen-

® H. Geiger, Proc. Roy. Soc. (London) A83, 505 (1910).
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1 R. R. Wilson, Phys. Rev. 71, 385 (1947).
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tration is

mhyg? i=1 70

4 (f,Z,to) =

which is the assumed initial distribution. The relation
between fy and 7, is thus given by r¢®= 4Dt,.

A natural consequence of the use of the expression (4)
is that the spurs overlap at all times, even initially.

CALCULATION OF SCAVENGER REACTION
The track equation is:
dc/dt= DV —kc®— k,c.c.

The scavenger concentration, ¢, is assumed to remain
uniform and constant for all times, and £ and £, are
taken as the reaction rate constants for the reactions
a and b, respectively. Integration over all space yields

dc
—dv= ——kfczdv—kscafcdv
ot

since
f DViedy=0
or
aw,
—-d——=k f Cdvtke, W, )
{
where

Wt=fcdv=zn: Vi, (5a)

i=1

A convenient expression,

1
f cdyv= —
(8w Di)}

n n (Zi—Z‘,')2
X[Z vii+2 2 va; exp(— )], (6)
=1 A 8D:.

1<J

is derived in Appendix I, where {=iy+7r. We define a

volume V, as
2
[ f cdv]
W2
Vi=———= .
f v f cidv

The physical significance of V; will be apparent in the
sequel. Substitution of (6a) into (6) gives
W 1

Vg (STDt)g

- 2 2 “ ( (2:—2;)? 7
X[Ev,-}— ,Z';V,‘V,' exp I~ )] (

i<j

(6a)
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These equations lead to the following expression for V,:

1 1 [1_Ln(87rDt) *]

Ve n@D)l | (2—n)nR

The derivation of expression (8) is given in Appendix IT.

A measure of the volume of a spur is given by (8xDf)t;
it is apparent from (7) and (8) that for the case in which
the spurs do not overlap appreciably, ie., when
exp(— (z:—2;)%/8Dt)~0, we have V,=~ (8xDt)t-n. That
is to say that for small enough time V, increases in »
isolated expanding spheres, and for large time V, ex-
pands as a cylinder [see Eq. (8)]. The reciprocal of the
factor within the square bracket in Eq. (8) may be
taken as a measure of the extent of spur overlapping
in a track at any time. Equation (7) indicates that at
very large time when exp(— (z;—z;)%*/8Df)~1, V; ex-
pands as a sphere. Equation (8) is not valid for such a
large expansion and for most practical cases with
moderate concentration of scavenger the radicals in
the track are found to be well exhausted long before
they outlive the elliptical stage of expansion, Exceptions

(8)

W,
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can be found in tracks of low-energy primary particles
and also for very low scavenger concentration.
Equation (5) can now be written in the form:

AW, EW?
a v,

+k,‘C,’W:.

The solution of the equation can be written in the form:

1 ¢
——-=exp(f k,c.dt)
W, to
14
kexp(——f k,cadt)
£ tp 1

: d'+—1, (9)
»j:u Vg' WO ,

where W, is the total number of radicals in the track
at time f. We make the substitution x=1/4 and
g=k.cilo. The fraction of the radicals surviving any
time x is then given by

1

explg{x— 1):}-[1+kW0t0 —

where

2 exp[—g(x—1)]

sexp[—qx'—1 2
f expl—g(» )]dx,_

) (10)
zexp[ —¢(x'—1)] ;]
e d

1 Vz'

V. w(87Di)t  m(x)}(8xDio)}
=z
exp(q) f exp(—y)-dy/y
4-gh-explq) puat <
- f exp(—y?)dy+ (10a)
n- (8xDip)t Ja (2—m)nR-8x Dty
The fraction S of the radicals reacting with scavenger is given by
kgc‘qtﬂ °
S= f W .dx
Wy V1
or
as 1
i . (11)

explg(v— 1)][1 +EW oty j:

One can then calculate .S by numerical integration.

= exp[ —q(x'— 1—);]_de]
V::’

NUMERICAL CALCULATIONS IN AQUEOUS SYSTEMS

The following values for the parameters occurring in Eq. (11) were adopted for calculation from the estimates

of previous authors?#5:
D=2X10"5 cm?/sec,

to=1.25X 10 sec,

k=101,

On the average, 6 radicals are assumed to be present in each spur at the initial time {, formed by the absorption
of 100 ev of primary energy. Substitution of these values in Eq. (11) and with the use of Eq. (10a) the general
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TasrE I. Range R and # values for particles of different
energies in aqueous system.
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F1c. 1. Radical recombination (1—S) in a-particle tracks of

different energy as function of scavenger concentration (g).
Graph for the 5.3-Mev track is not shown in the figure.

form of the equation in aqueous systems is

as

Energy
Particle in Mev Rinp 7
a particle 10.00 108.4 1.66
« particle 7.68 67.22 1.60
a particle 5.30 38.1= 1.50
« particle 2.00 10.1 1.12
Protons 10.00 1211 1.77
Protons 5.00 355 1.73
Protons 1.00 23 1.57
Protons 0.50 8.81b 1.45
Protons 0.10 1.105% 1.14
Electrons 0.50 1748 1.40
Electrons 0.10 141.2 1.70
Electrons 0.05 42.7 1.75
Electrons 0.01 2.52 1.75

s Taken from Carvalho and Yodoga, reference 13.

b Calculated from Wenzel and Whaling’s data (reference 14),

¢ Extrapolated from Lea's Table (reference 12). The rest of the range
values are taken from Lea.

—=g
dx

explg(x— 1)][1.9525-0'9525 expl—g(s—1)]

xt

(gt
—1.9048¢* exp(g) - f , exp(—38)dy+
& . °

The results obtained with « particle, proton, and elec-
tron tracks are discussed in the following. Values of R
are taken from Lea? except in the cases cited, and 9
values are calculated therefrom.

For the range of & particles of energy 5.3 Mev'and
7.68 Mev, the more accurate experimental data of
Carvalho and Yogoda!® were taken and 7 calculated
from their values of molecular stopping power.

The range of protons of energy below 1 Mev were
computed from the results of stopping power for protons

Loop
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(1)
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F1e. 2. Radical recombination (1—S) in B-particle tracks of

different energy as function of scavenger concentration (g).

2D, E. Lea, Actions of Radiations on Living Cells (Cambridge
University Press, New York, 1947), pp. 24-26.
1BH, G. Carvalho and H. Yogoda, Phys. Rev. 88, 273 (1952).

(12)

1.1937-10~7-n exp(q) f“exp(—y)
dy]
(2—n)mR q y

obtained with D,0 ice by Wenzel and Whaling'* and
also 7 was calculated therefrom. Table I gives a collec-
tion of R and % values for particles of different energies
passing through aqueous systems.

An arbitrary criterion for the extent of time x up
to which the condition for cylindrical expansion of the
track [Eq. (8)] is approximately fulfilled, may be
expressed as

8w Dig)t-xt
(87Dto) <1

Nty
R
or
' £<1.6X108- R, (13)
Loor
0.1 Mev
[& 3
osok oo
Q.60
(1-s)
o040
oz0r
L 1 i 1 4 ra

R

]
—
-

-2
log &
F16. 3. Radical recombination (1—S) in proton tracks of different

energy as function of scavenger concentration (g).

4 W, A. Wenzel and W. Whaling, Phys. Rev. 87, 499 (1952).
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Fi6. 4. Scavenger reaction (S) in proton tracks as function of

the total number of spurs (#), for different values of scavenger
concentration (g).

The lowest range for the particles chosen here is of the
order of 1u, which offers the poorest case for the ap-
plicability of Eq. (8). From the relation (13) it is seen
that Eq. (8) will continue to hold in such tracks for
time x up to 1.6X10%. Calculations show that for the
case ¢=10"% and R~1yu, 809 of the reaction is over by
that time, and for values of ¢>10—* the condition (13)
is much better fulfilled up to the time when the reactions
are reduced to insignificance.

RESULTS AND DISCUSSION

In Figs. 1-3 calculated values of 1S (which give
the extents of radical recombination) are plotted against
logg for different energies of the primary particles, as
indications of the general nature of the dependence of
S on ¢ (see references 4 and 5). In all cases it is ap-
parent that at low values of ¢ the net radical recom-
bination attains limiting values. The value of .S for
¢=0 can be taken as a measure of the radicals which
escape recombination.? It should be noted that accord-
ing to Eq. (11), at zero concentration of scavenger
(g=0), 5=0, i.e., given infinite time, none of the radicals
would escape recombination. The limiting values of .S,
as obtained in the figures at very low values of ¢, give a
measure of radicals which in effect escape recombina-
tion in tracks and these can be compared with experi-
mental “radical yields.” In dense a-particle tracks,
for the energy range considered, most of the reaction is
radical recombination (~959%,) at low scavenger con-
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F1c. 5. Scavenger reaction (S) in electron tracks as function
of the total number of spurs (#) for different values of scavenger
concentration (g).

centrations. For electron tracks, radical recombination
is much lower, and proton tracks are intermediate as
one would expect. It can also be noted from the curves
that, in the range considered, scavenger effects increase
with increase in particle energy.

Figures 4 and 5 show the dependence of scavenger
reaction on primary particle energy for selected
scavenger concentrations. These curves are all mono-
tonic. Magee in a recent paper® developed a ‘‘two-
stage” diffusion model for tracks and found that such
curves were predicted to have minima. The present
treatment, however, has an assumption which limits its
validity to relatively high energies. The development
of Appendix II is valid only for a large number of spurs.

The results of this treatment are in good qualitative
agreement with previous diffusion model treatments.
This detailed consideration of the track structure, of
course, brings in more parameters than simpler treat-
ments, Since an effect is calculated for the intermingling
of the radicals from neighboring spurs even for lightly
ionizing particles such as an electron having an energy
of approximately 1 Mev, a consideration of the distri-
bution of spur sizes is expected to be necessary for
further refinement of the model.
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APPENDIX 1. DERIVATION OF A CONVENIENT EXPRESSION FOR THE INTEGRAL /c%dv

With use of Eq. (4) we can write

1 © exp(—2s2/4D1) ®r n (z—z)%\1* dz
fc2dv=' f -27rrdrf [Z v exp(— )]
(4xDi)t J 47Dt =1 4Dt (4xDi)?

—0

1 [ ”Zn \ ( 2(z—z1~)2) dz
= viexpl —
204xD)ilJ = 4Dy

L
(4nxDi)}

19 wi (z—2*+ (z—2)%\ dz ]
f o eXp( 4Dt (4rDi)t

—o0
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1 [1 Zﬂ: 21 9 Zn: ( (Zi"’Zj)2
=——]—2 vt viv;expl —
24 DHHVZ = i, 7P 8D1
i<;
1 F'Zn ) i (Z,’"Zj)2
= vt vivs exp( - )]
(8 Di)éL =1 i, ’ 8Dt
i<;
or,
1 [ " (2:—2;)°
= — > v+ v exp(— )] :
(8 D)L= i, 8Dt

i%5

APPENDIX II. DERIVATION OF AN APPROXIMATE
EXPRESSION FOR THE TRACK VOLUME (V)

By substitution of the expression (I) in Appendix I
for the integral f¢%dv, one gets from Eq. (6a):

(R )

—_— = — Vi ViV, eXp - y

V. @GsDpilim 55 8Dt

[ ¥ i
where z;2= (z,—z;)°. With the use of (5a) this can be
written
(iv)? 1 re zift
= P Z—i-z viv; exp(——)].
v. (smopills’ ! 8D

i
If all the »’s are taken as equal, this becomes

ny? 1 g 2i
(81rDt)3|:nv +v :Z?;J exp(—gb—t)]. (ITa)

We now evaluate the expression

2:7
Q= Z eXP(—ﬁ)

V.

1#

First expressing the double summation as a series of

single summations,
n—1 Zi, iv1 n—2 2; i4d
Q=2[Z exp(~ +X eXP(— )
Li=t 8Dt i=1 8Dt
n—3 %4, i+3
+ Z exp{ —— )-l— . (1Ib)

For a random distribution of spurs the probability
function for adjacent neighbors is given by exp(—x/Z,)
-dx/Z, for a spur to fall within x and x+dx, Z; being
the average spacing. For alternate neighbors the func-
tion is given by exp(—x/Z1)- (x/1!Z:%)dx and so on.
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® [V2z— (2:42,/V2) I\ d
R G =

D
Therefore the expression (ITb) can be written as
dx dn i
oor [f Tem(-2-2 ),
Z1 8Dt Zl dp
x x*\ xdx dn
+exp — e — . ——— ——— .
Zl SDt 1!Z12 dp
x x*\ x%x dn
—i—exp(———-~—)-—-—~——- p+"'], (ITc)
Zy 8DtJ 21Z¢ dp

neglecting the negative terms of the series. The terms
of the series (IIb) which take into account the widely
separated spurs, contribute insignificantly to the total
sum. The series converges rather rapidly; i.e., before
the negative numbers in the upper limits of summa-
tions in the series (IIb) become comparable with #,
the sums themselves become vanishingly small. This
corresponds to the physical situation that only the
neighboring spurs in a track contribute to their over-
lapping and the distant spurs do not overlap for all
practical purposes. Hence, we may write

L L)
0= P Z, 8Dt
x X x?
X[1+—+*+ X -]d
Zy 217 3173

R © 1 x2
f —e p(——)dxdp
0 0o Zi? 8Dt

dn
x—dp
dp

since
dn 1
dp Zl.
Substitution for Z,, as obtained in Eq. (3) and integra-
tion gives
n Zi_,z n*- (87I'Dt)‘)
§ ap(~22) 0!
23 8Dt/ (2—m)nR
1¥y

Hence, from (ITa) we have
1 1
. 1+
V. n@xD)iL
which is Eq. (8).

n(8xDt) 9]
@—nmRrY



