I need to solve a quadratic equation, in an algebra with multiplication which does not commute, i.e. a*b is not equal to b*a. The equation to be
solved is a simple quadratic one:
x*a*x + b*x + c = 0
Here x is the unknown, a has an inverse a', such that a'*a = a*a' = 1.
How could this be solved? I'm totally stuck….
……Yes, there is a division operator, but a left and a right division. E.g. if a*b = c, then b = a'*c (provided a has an inverse, i.e. a is not
equal to 0).
But if b*a = c, then b = c*a'….
….but over a finite field GF(p^n), not to be confused with the ring Z/p^nZ, which is not even a field (the latter has an a and b, such that a and b
both are non-zero, while the product a*b equals 0). But that does not matter, the question preferrably should be answered, without referring to
some specific algebra…. – (italics mine)
…So, the elements a,b,c and x are matrices with elements of a finite field (GF(p^n)). These are discrete fields of characteristic p
|