I was able to retrieve the requested article on microfilm. Here's most of the article:
Quote: | The production of ethyl chloroacetate, and eventually of choroacetic acid, by the action of water on aB (these should be alpha and beta, but I
don't recall how to make greek symbols)-dichlorovinyl ethyl ether has been the subject of a large number of patents. By using dry hydrogen
chloride in place of water, chloroacetyl chloride is obtained (<A
HREF="http://l2.espacenet.com/espacenet/bnsviewer?CY=ch&LG=en&DB=EPD&PN=DE222194&ID=DE++++222194A++I+">DE222194</A>, and Imbert found (<A
HREF="http://l2.espacenet.com/espacenet/bnsviewer?CY=ch&LG=en&DB=EPD&PN=DE212592&ID=DE++++212592A++I+">DE212592</A> that dichlorovinyl ethyl ether and ethyl alcohol react, with the production of ethyl
chloroacetate and ethyl chloride.
We find that aB-dichlorovinyl ether enters into a large number of reactions of the above type. It is attacked, and usually with great readiness, when
heated with alcohols, phenols, or acids. Action is of two kinds:
CHCl:CCl-OEt + ROH ->
1) CH<sub>2</sub>Cl-CO<sub>2</sub>R + EtCl
2) CH<sub>2</sub>Cl-CO<sub>2</sub>Et + RCl
and it seems likely that an additive compounnd, CH<sub>2</sub>Cl-CCl(OEt)-OR, is first formed, which decomposes into the products 1 and 2.
Our experience is that alcohols give the products of both reactions, but that 1 predominates, except in the case of methyl alcohol. Phenols give the
products of 1 only, and usually in excellent yield. Acids react mainly in accordance with 2, the products being ethyl chloroacetate and an acid
chloride. The yields are variable, but it would appear that reactions of the above type could be used in certain cases for the production of
chloroacetates or acid chlorides.
To prepare aB-dichlorovinyl ether, sodium is dissolved in dry alcohol in sufficient quantity to form a saturated solution of sodium ethoxide.
Trichloroethylene is then added in the proportion of one molecule of trichloroethylene to one and a half atoms of sodium. Heat is applied until action
commences, when further heating is unnecessary. The product, when cold, is mixed with a large volume of distilled water, and the oil which separates
is washed, dried with calcium chloride, and rectified. The main portion distills at 122-126 degrees C, and this is nearly pure dichlorovinyl ethyl
ether. The yield is about 70 percent of the theoretical.
For the action on alcohols or phenols, the substance was employed in as dry a state as possible and mixed with the ether in equivalent quantity. Heat
was applied to start the reaction, but further heating was often unnecessary, except toward the end of the process. In other cases, however, head had
to be applied throughout to maintain the reaction. The products were separated by fractional distillation, or, where possible, by crystallization.
The results with methyl alcohol were not in accordance with Imbert's statement. Ethyl chloroacetate was the main product and methyl chloroacetate was
only produced in relatively small quantity. Ethyl alcohol gave the expected excellent yield of ethyl chloroacetate. iso-Amyl, heptyl, allyl, and
menthyl alcohols were each found to yield the chloroacetate of the acid radicle, but ethyl chloroacetate was also formed in these cases.
All the phenols examined gave good yields of the aryl chloroacetate, but in no case was ethyl chloroacetate detected. The compounds dealt with were
phenol, o-cresol, guaiacol, alpha and beta-naphthol, resorcinol, and quinol. The two latter compounds gave the bischloroacetates.
The monobasic acids, the behavior of which with dichlorovinyl ethyl ether was examined, were acetic, chloroacetic, phenylacetic, benzoic, anisic, and
alpha-naphthoic. In most cases action occurred readily on heating, but it was necessary to apply heat continuously throughout the process. Some
hydrogen chloride was evolved in each case, but ethyl chloride was only observed in the case of anisic acid and of naphthoic acid. Ethyl chloroacetate
was always present as the chief product of the reaction. The acid chloride formed at the same time was isolated in a pure state in the reactions with
acetic, chloroacetic, and benzoic acids. In the other cases, the acid chloride was not obtained pure, but its presence was indicated by the immediate
production of the corresponding amide on treating the appropriate fraction with ammonia. |
Oooh, making acetyl chloride and ethyl chloroacetate - what interesting products to obtain from a cheap solvent chemical! Now if only sodium ethoxide
were a little easier for an amateur of limited means to prepare in a clean and concentrated state. |