Originally posted by S.C. Wack
I went to the library last Sunday to look up the ozone via H2SO4 electrolysis refs. Not that I have Pt electrodes, just curious. The only peroxide sp.
gr. tables that I had were in 10% increments, so I wrote down what was in one of the refs that I stumbled on while doing so. I think that this was at
16C: 20% = 1.0725, 25% = 1.0918, 30% = 1.1122, 35% = 1.1327, 40% = 1.1536, 45% = 1.1749.
I've made small amounts of the Ba and Na peroxide hydrates from the hydroxides and H2O2. Not sure how well these dry out, at least without P2O5 in the
vacuum dessicator. But they do precipitate very nicely out of the H2O2 and are easily isolated quickly. I seem to remember reading somewhere that
heating without vacuum gives loss of O as well as water, so I haven't tried that.
One of the books that I scanned and uploaded to axehandle, Oxidations in Organic Chemistry, mentions the preparation of anhydrous H2O2 in Et2O from
the 30% peroxide if anyone ever needs such a thing.
I make all of my peroxide now, in not small amounts, from drugstore 3%. I hoard it when it is on sale, 3 pints for $1. I used to just let it evaporate
because with the stabilizers and all, if you use big clean (buffed to a polish) glass mixing bowls then dust is not a problem. Even 35% can have a
bunch of dust on it and not bubble at all. Yields were high. Metal is another story. But then I found that heating below 70C will concentrate to 45%
with little loss of O2.
I've tried the freezing yet I use heating. But that's me.
Don't know if this has been mentioned before, but the volume thing is based on how much O can be released from 1 ml of the peroxide; e.g. 1 ml of 3%
H2O2 can release 10 ml of O.
Off topic, but the only other thing that happened at the library Sunday, other than the peroxide refs (and being required to present photo ID in
addition to my library card!) was accidentally stumbling onto an interesting Na production lecture demonstration from JCE. Looks like Cyrus was onto
something when he mentioned using light bulbs in the unconventional Na thread, sort of, but he got no love. I uploaded it to axehandle as
na_from_nano3_and _a_light_bulb.pdf. Someone might want to see exactly how much Na a light bulb could produce if left on long enough. I paid too much
for mine to not use it, so it's up to someone else.
[Edited on 25-11-2004 by S.C. Wack] |