The reduction of nitrate to nitrite can be accomplished
satisfactorily, and the process is the subject of a recent
patent.
1
I t has been shown (Miiller and "Weber)
2
tha t in
a divided cell, smooth platinum or copper cathodes reduce
nitrate to nitrite and ammonia, but platinised platinum
gives much ammonia and little nitrite. A spongy copper
or silver cathode was found to give the best results. Wit h
a current density of 0*25 amps, per dm.
3
and a concentration
of 2*3 grams of sodium nitrate per litre, a current efficiency
of 90 per cent, was obtained. The current efficiency with
an amalgamated copper cathode was found to diminish
when 50 per cent, of the nitrate had been changed.
Considerable care is evidently needed to prevent the forma-
tion of ammonia, since it has been shown by W. H. Easton3 that nitrates may be quantitatively reduced to ammonia by
electrolysis.
In the patent referred to above, the cell described is
suitable for the electrolysis of alkali chloride and is of the
bell type, but it is particularly suitable for electrolysing
alkali nitrate. Pure nitric acid is formed at the anode
inside the bell and is removed by distillation, which is
effected by working under reduced pressure and by heating
the bells with superheated steam. The nitrite which is
formed at the cathode is drawn off continuously and
separated outside the cell. The cell itself acts as cathode,
and the anode is of such size as to almost fill the bell and
thus reduce the working space of the electrolyte. High
current density (16 amps, per dm.
2
), reduced pressure and
high temperature, are favourable to the distillation of a
large amount of concentrated nitric acid. |