The uranium tetrachloride powder formed and collected in the chlorination
operation is now fed to a reduction operation where the uranium
tetrachloride will be reduced to form metallic uranium. The uranium
tetrachloride is reduced by contacting it with a metal which is a greater
reducing agent than uranium in the electromotive-force series, whereby the
uranium tetrachloride will reduce to metallic uranium while the other
metal is oxidized to form the corresponding chloride of the metal.
A preferred group of reducing metals which may be useful in carrying out
this step of the process is either lithium or the alkaline earth metals
such as calcium, magnesium, barium, and strontium. Preferably the reducing
metal is either calcium or magnesium metal, and most preferably the
reducing metal is magnesium. The following equation., using magnesium as
the reducing metal by way of illustration, and not of limitation, shows
the uranium reduction reaction.
UCl4 +2Mg ---> U+2MgCl2 (4)
While the above reaction is capable of forming metallic uranium, without
further additives, the resulting metallic uranium has a melting point of
about 1132° C. This necessitates carrying out the reaction at this
temperature or higher in order to maintain the uranium in liquid form in
the reactor to facilitate its removal when the reaction is carried out on
a continuous basis.
It would, therefore, be preferable to add to the reaction another metal
which is capable of alloying with the uranium to form an alloy or alloys
with lower melting temperatures than pure uranium. Typically, such metals
are those which form eutectic systems with uranium. These metals should
not interfere with the reduction reaction being carried out. A preferred
metal additive for this purpose is iron which, for example, will alloy
with uranium at a mole ratio of about 33 mole % iron, 67 mole % uranium
to form a low melting eutectic alloy having a melting point of about
725° C.
Other metals which could be used instead of iron, i.e., metals which can
form an alloy with a melting point lower than that of pure uranium
without, however, interfering with the uranium reduction reaction,
include: (a) one or more metals which form eutectic alloy systems with
uranium in which uranium is the major alloying constituent (i.e., in the
order of 60 mole % or higher), such as chromium, manganese, cobalt,
nickel, and the platinum metals ruthenium, rhodium, palladium, osmium,
iridium, and platinum; and (b) one or more metals which form eutectic
alloy systems with uranium in which uranium is the minor alloying
constituent (i.e., in the order of at least about 1 mole %, but less than
about 15 mole %) such as aluminum, gold, silver, copper, germanium, and
zinc. |