The carbonate has a much lower decomposition potential at high temperatures than the equivalent chloride does. The oxide requires even less. So
really, no chlorine is formed unless one blasts the snot out of the anode.
The next experiment will probably start from this system:
with Li2CO3 added incrementally until I begin obtaining an adherent deposit of carbon at the cathode.
[...]
Over time more carbonate will have to be added. In a way, CO2 is being co-electrolyzed using lithium as a catalyst
of sorts. According to the reference mentioned previously CaCO3 can be used to add CO2 back into the system, as CaCO3
is soluble in the melt, but the resulting CaO precipitates out.
Now, for a bit of fun with calcium I picked up some fluorspar (CaF2) from the pottery shop, and some CaCl2 from the grocery
store. The minimum melting point of this system is about 650C, which is much better than pure CaCl2 alone (772C). At 650C it
turns out that CaO is quite soluble in this melt, so this should allow me to avoid halogen gas production, as well as to use
a nickel/nickel oxide anode. Calcium metal is a solid at those temperatures, so its collection--especially at the lower melt
temperature--shouldn't be too difficult. I think at the melting point of CaCl2, calcium dissolves quite readily into the molten salt.
Anyway, if i get around to that, I'll post it in one of the "calcium" threads. |