Another breakthrough occurred during the research aimed at initiating ETN as easy as possible. For full initiation of ETN in a solid cavity, it is
possible to use a mixture consisting only of NH4ClO4 and nitrocellulose with a nitrogen content of more than 13%. The tested ratio was AP 80% + NC
20%. Working name Nitrocelite.
0.8 g of AP is crushing in a stainless steel bowl together with 0,2g NC under of acetone level to a homogeneous mass. During mixing, acetone
gradually evaporates at a working temperature of 25 - 30 C. A paste is formed, which can be divided into smaller pieces when wet. These smaller pieces
can then be pushed through a 1x1 mm sieve. It's a bit difficult. Because at 20% NC content, the mixture is difficult to divide into 1x1 mm
agglomerates. It was observed that AP tends to separate from NC during the process. But without negative effect on functionality. Oxygen balance on
CO2 is +18,4. Which is against all rules of pyrotechnics compositions. Despite this, it works. Burning rate on air is relatively low, similarly as
meal BP. Sensitivity on anvil is medium, similarly as safety matches. Output segment ETN 300 mg was pressed on high density cca 30Kg. Follow segment
is 10 mg ETN + 10mg of Nitrocelite pressed handly on 1Kg. Followed insert bridge wire. Followed segment is pure Nitrocelit pressed on handly power 1 -
5 Kg. Others parameters are same as here above. Thus steel cavity 6/8 mm. This assseble provide standard crater 15 - 16 mm, deep 5 - 6 mm. Which is
consistent with full detonation of ETN from other primarily - secondary materials. The mixture is pH neutral and not hygroscopic. From the above, it
is possible to classify Nitrocelite as a material with NPED performance properties. Optionally, the addition of powdered aluminum + 5% is possible.
(or elses catalyzeurs, fuels)
The only disadvantage of Nitrocelite is need to prepare high-quality, well-nitrated nitrocellulose. But for one NPED is nesessary only 200mg of NC
13%N+......
|