Difference between revisions of "Argon"
(Created page with "File:Solid_argon_melting_and_subliming_The_Royal_Institution.jpg|thumb|300px|Argon, after being frozen with liquid nitrogen, melting and subliming at the same time, at stand...") |
|||
Line 26: | Line 26: | ||
==Handling== | ==Handling== | ||
===Safety=== | ===Safety=== | ||
− | Argon is inert and will react with any compounds, making it safe to use. It may pose an asphyxiation hazard in closed rooms. Since it's heavier than air, it will accumulate on the | + | Argon is inert and will not react with any compounds, making it safe to use. It may pose an asphyxiation hazard in closed rooms. Since it's heavier than air, it will accumulate on the lower part of a room. |
===Storage=== | ===Storage=== | ||
Line 32: | Line 32: | ||
===Disposal=== | ===Disposal=== | ||
− | Argon can be released in atmosphere. | + | Argon can be released in atmosphere, though best avoid closed spaces. |
==References== | ==References== | ||
<references/> | <references/> | ||
===Relevant Sciencemadness threads=== | ===Relevant Sciencemadness threads=== | ||
+ | |||
[[Category:Elements]] | [[Category:Elements]] | ||
[[Category:Gases]] | [[Category:Gases]] |
Revision as of 14:18, 3 August 2015
Argon is a noble gas with the symbol Ar and the atomic number 18. It forms no compounds accessible to the home chemist.
Contents
Properties
Physical
Argon is a colorless, odorless gas at standard conditions, with a boiling point of -185.848 °C and a melting point of −189.34 °C. It is heavier than air, with an density of 1.784 g/L. Unlike nitrogen, argon is 2.5 times more soluble in water, solubility similar to that of oxygen.
Chemical
Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature. At 8 K, argon reacts with hydrogen fluoride, on a cesium iodide surface, resulting in argon fluorohydride, HArF, which is stable only under 17 K.
Availability
Argon is used as a shielding gas in welding, so many gas or welding supply stores will sell and rent out cylinders of pure argon or mixtures of argon and carbon dioxide (the more argon in the mixture, the more expensive it is).
A crude form of argon that is accessible to most people can be obtained from light bulbs, which may contain argon or a mixture of argon and nitrogen. This can be done by holding the bulb underwater, and slipping an open plastic bag around the bulb so that no air is in the bag. After sealing the bag, the light bulb can be broken, causing the inert gas inside to rise to the top while still trapped in the bag.
Preparation
Argon can be separated from liquified air, although the process is very consuming and complicated due to argon's narrow liquid temperature range. It's best to buy argon cylinders.
Uses
As it takes no role in any chemistry, argon can be used as an inert atmosphere.
Creating an inert atmosphere in a home chemistry setting is difficult, and not often done. Nitrogen is usually used in the rare case it is attempted, and argon is called upon when nitrogen and carbon dioxide are unsuitable, as both carbon dioxide and nitrogen are cheaper gases than argon. For some processes that cannot be done in either of these atmospheres, the more expensive and difficult-to-find argon must be used. As argon is heavier than air, any container that is supposed to hold an argon atmosphere should have the opening above.
The most common use of argon is likely the preservation of samples or presentation in element collections.
Handling
Safety
Argon is inert and will not react with any compounds, making it safe to use. It may pose an asphyxiation hazard in closed rooms. Since it's heavier than air, it will accumulate on the lower part of a room.
Storage
Compressed argon should be stored away from heat.
Disposal
Argon can be released in atmosphere, though best avoid closed spaces.